The IXTEX3 Sources

The KTEX Project*
Released 2025-06-09

Abstract

This is the typset sources for the expl3 programming environment; see the matching
interface3 PDF for the API reference manual. The expl3 modules set up a naming
scheme for I¥TEX commands, which allow the I¥TEX programmer to systematically
name functions and variables, and specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

The expl3 modules are designed to be loaded on top of KTEX 2s. With an up-to-
date IXTEX 2¢ kernel, this material is loaded as part of the format. The fundamental
programming code can also be loaded with other TEX formats, subject to restrictions
on the full range of functionality.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I

1

Introduction

Introduction to expl3 and this document
1.1 Naming functions and variables
1.1.1 Behavior of c-type arguments when the N-type token resulting from
expansion is undefined L.
1.1.2 Scratch variables L
1.1.3 Terminological inexactitude
1.2 Documentation conventionso
1.3 Formal language conventions which apply generally
1.4 TgEX concepts not supported by IXTEX3

II Bootstrapping

2

The I3bootstrap module: Bootstrap code
2.1 Using the BTEX3 modules

The I13names module: Namespace for primitives
3.1 Setting up the BTEX3 programming language

IIT Programming Flow

4

The 13basics module: Basic definitions
4.1 No operation functions
4.2 Grouping material oL
4.3 Control sequences and functions
4.3.1 Defining functionso o oo
4.3.2 Defining new functions using parameter text
4.3.3 Defining new functions using the signature
4.3.4 Copying control sequences
4.3.5 Deleting control sequences
4.3.6 Showing control sequences
4.3.7 Converting to and from control sequences
4.4 Analyzing control sequences
4.5 Using or removing tokens and arguments
4.5.1 Selecting tokens from delimited arguments
4.6 Predicates and conditionalso o000
4.6.1 Tests on control sequenceso
4.6.2 Primitive conditionals oo oo
4.7 Starting a paragraph
4.8 Debugging supporto e

ii

NN

0 3 O Ot Ot Ot

10
10

12
12

The 13expan module: Argument expansion

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Defining new variants
Methods for defining variants Lo
Introducing the variants L oo
Manipulating the first argumento
Manipulating two arguments Lo
Manipulating three arguments L.,
Unbraced expansion oo
Preventing expansiono oL Lo
Controlled expansion L
Internal functions oL L L

The I3sort module: Sorting functions

6.1

Controlling sorting L L

The I3tl-analysis module: Analyzing token lists

The 13regex module: Regular expressions in TEX

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

Syntax of regular expressions Lo
8.1.1 Regular expression examples
8.1.2 Characters in regular expressions
8.1.3 Characters classes L L oo
8.1.4 Structure: alternatives, groups, repetitions
8.1.5 Matching exact tokens oo oL
8.1.6 Miscellaneous

Syntax of the replacement text L.

Pre-compiling regular expressionso

Matching e

Submatch extraction L oL

Replacement Lo

Scratch regular expressionso

Bugs, misfeatures, future work, and other possibilities

The 13prg module: Control structures

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8

9.9

Defining a set of conditional functions
The boolean data type e
9.2.1 Constant and scratch booleans
Boolean expressions Lo L
Logical loops
Producing multiple copies oo
Detecting TEX's mode Lo
Primitive conditionals L Lo oo
Nestable recursions and mappings
9.8.1 Simple mappings ot
Internal programming functions L oL

iii

32
32
33
35
36
38
38
40
41
42
44

45
45

47

48
49
49
50
50
ol
92
54
54
56
57
98
59
61
61

10 The I3sys module: System/runtime functions 75
10.1 The name of the job, . 75
10.2 Dateand time oL L 75
10.3 Engine oL 76
10.4 Output format L 77
10.5 Platform 78
10.6 Random numbers L L Lo 78
10.7 Accesstotheshell 78
10.8 System querieso e 79
10.9 Loading configuration data Lo L. 80

10.9.1 Final settings o 81

11 The I3msg module: Messages 82
11.1 Creating new messages o v v v v vt 82
11.2 Customizable information for message modules 83
11.3 Contextual information for messages 84
11,4 Tssuing mesSsages v v vt it e e e e 85

11.4.1 Messages for showing material 89
11.4.2 Expandable error messages L oL 89
11.5 Redirecting messages Lo e 90

12 The I3file module: File and I/O operations 92

12.1 Input-output stream management L. 92
12.1.1 Reading from files 94
12.1.2 Reading from the terminal 98
12.1.3 Writing to files Lo 98
12.1.4 Wrapping lines in output 100
12.1.5 Constant input—output streams, and variables 101
12.1.6 Primitive conditionals oo, 101

12.2 Fileoperations L e 101
12.2.1 Basic file operations L. 101
12.2.2 Information about files and file contents 102
12.2.3 Accessing file contents oL 105

13 The I3luatex module: LuaTgX-specific functions 107
13.1 BreakingouttoLua. o 107
13.2 Luainterfaces 108

14 The I3legacy module: Interfaces to legacy concepts 110

IV Data types 111

iv

15 The 13tl module: Token lists
15.1 Creating and initializing token list variables
15.2 Adding data to token list variables
15.3 Token list conditionals Lo
15.3.1 Testing the first token oo L.
15.4 Working with token lists asa whole
15.4.1 Using token lists
15.4.2 Counting and reversing token lists
15.4.3 Viewing token lists oo
15.5 Manipulating items in token listso oL
15.5.1 Mapping over token lists oL
15.5.2 Head and tail of token lists
15.5.3 Items and ranges in token lists
15.5.4 Sorting token lists L Lo
15.6 Manipulating tokens in token lists 0.
15.6.1 Replacing tokens o
15.6.2 Reassigning category codes
15.7 Constant token lists L oo
15.8 Scratch token lists

16 The 13tl-build module: Piecewise t1 constructions
16.1 Constructing (t1 var) by accumulation

17 The I3str module: Strings
17.1 Creating and initializing string variables
17.2 Adding data to string variables oL oL
17.3 String conditionals L L o
17.4 Mapping over strings
17.5 Working with the content of strings
17.6 Modifying string variables o oL
17.7 String manipulation
17.8 Viewing strings L Lo
17.9 Constant strings L L
17.10 Scratch strings oL L

18 The I3str-convert module: String encoding conversions
18.1 Encoding and escaping schemes
18.2 Conversion functions L L oo
18.3 Conversion by expansion (for PDF contexts)
18.4 Possibilities, and thingstodo

19 The I3quark module: Quarks and scan marks
19.1 Quarks e
19.2 Defining quarks Lo
19.3 Quark tests
19.4 Recursion e e
19.4.1 An example of recursion with quarks
19.5 Scan marks

112
112
113
114
116
117
117
118
120
121
121
122
124
126
126
126
128
129
129

130
130

132
133
133
134
136
138
140
141
142
143
143

144
144
146
146
146

20 The I13seq module: Sequences and stacks
Creating and initializing sequences

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9

Appending data to sequences

Recovering items from sequences
Recovering values from sequences with branching

Modifying sequences
Sequence conditionals
Mapping over sequences . .

Using the content of sequences directly

Sequences as stacks

20.10 Sequences as sets
20.11 Constant and scratch sequences
20.12 Viewing sequences

21 The I13int module: Integers

21.1
21.2
21.3
214
21.5
21.6
21.7
21.8
21.9

Integer expressions

Creating and initializing integers
Setting and incrementing integerso

Using integers

Integer expression conditionals

Integer expression loops . . .
Integer step functions
Formatting integers

Converting from other formats to integers
21.10 Random integers
21.11 Viewing integers
21.12 Constant integers
21.13 Scratch integers
21.14 Direct number expansion . .
21.15 Primitive conditionals

22 The I3flag module: Expandable flags

22.1
22.2

Setting up flags
Expandable flag commands .

23 The 13clist module: Comma separated lists
Creating and initializing comma lists

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9

Adding data to comma lists
Modifying comma lists . . .
Comma list conditionals . .
Mapping over comma lists .

Using the content of comma lists directly

Comma lists as stacks
Using a single item

Viewing comma lists

23.10 Constant and scratch comma lists

vi

153
153
156
156
158
159
160
160
163
164
165
166
167

168
168
170
171
172
172
174
176
177
179
180
180
180
181
181
182

183
183
184

24 The I3token module: Token manipulation

24.1
24.2
24.3
24.4
24.5
24.6
24.7

Creating character tokens
Manipulating and interrogating character tokens
Generic tokenso
Converting tokens oL oL
Token conditionalso
Peeking ahead at the next token
Description of all possible tokens

25 The 13prop module: Property lists

25.1
25.2
25.3
254
25.5
25.6
25.7
25.8
25.9
25.10

Creating and initializing property lists
Adding and updating property list entries
Recovering values from property lists
Modifying property lists Lo
Property list conditionals L 0 L.
Recovering values from property lists with branching
Mapping over property lists oo oL
Viewing property lists. oo
Scratch property lists Lo o
Constants e

26 The I13skip module: Dimensions and skips

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10
26.11
26.12
26.13
26.14
26.15
26.16
26.17
26.18
26.19
26.20
26.21
26.22
26.23
26.24
26.25

Creating and initializing dim variables
Setting dim variables L. L oL
Utilities for dimension calculations
Dimension expression conditionalso oL
Dimension expression loops 0oL
Dimension step functionso o oo
Using dim expressions and variables
Viewing dim variables
Constant dimensions L 0L
Scratch dimensions
Creating and initializing skip variables
Setting skip variables o oL o
Skip expression conditionals Lo oL
Using skip expressions and variables
Viewing skip variables oo 00000
Constant skipso
Scratch skips oL
Inserting skips into the output
Creating and initializing muskip variables
Setting muskip variables L Lo
Using muskip expressions and variables
Viewing muskip variables oL o oL
Constant muskips oL oL
Scratch muskips o
Primitive conditional oo oo

vii

197
198
199
202
202
203
207
212

215
216
218
219
220
220
221
222
223
224
224

27 The 13keys module: Key—value interfaces

27.1
27.2
27.3
274
27.5
27.6
27.7
27.8
27.9

Creating keys
Sub-dividing keys oL oL
Choice and multiple choice keys
Key usage scope L oo
Setting keys
Handling of unknown keys
Selective key setting oL
Precompiling keys o oo
Utility functions for keys oL
27.10 Low-level interface for parsing key—val lists

28 The I3intarray module: Fast global integer arrays

28.1
28.2
28.3
28.4
28.5
28.6
28.7

Creating and initializing integer array variables
Adding data to integer arrays
Counting entries in integer arrays
Using asingleentry oL
Integer array conditional oL
Viewing integer arrays
Implementation notes

29 The 13fp module: Floating points

29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9

Creating and initializing floating point variables
Setting floating point variables L.
Using floating points L.
Floating point conditionals
Floating point expression loops
Symbolic expressions Lo
User-defined functions
Some useful constants, and scratch variables
Scratch variables oL o o
29.10 Floating point exceptions
29.11 Viewing floating points
29.12 Floating point expressions
29.12.1 Input of floating point numbers
29.12.2 Precedence of operators
29.12.30perations
29.13 Disclaimer and roadmap

30 The I3fparray module: Fast global floating point arrays

30.1
30.2
30.3
30.4
30.5

Creating and initializing floating point array variables
Adding data to floating point arrays.
Counting entries in floating point arrays
Using asingleentry oL
Floating point array conditional

31 The I3bitset module: Bitsets

31.1
31.2
31.3

Creating bitsets
Setting and unsetting bits
Using bitsets o oo

viii

241
242
247
247
250
250
251
251
253
253
253

257
257
258
258
258
258
258
259

260
262
262
263
264
266
268
270
271
271
272
273
273
273
274
275
282

285
285
285
286
286
286

32 The I3cctab module: Category code tables 291

32.1 Creating and initializing category code tables 291
32.2 Using category code tables Lo oo L 292
32.3 Category code table conditionals 292
32.4 Constant and scratch category code tables 292
V Text manipulation 294
33 The 13unicode module: Unicode support functions 295
34 The I3text module: Text processing 298
34.1 Expanding text oL 298
34.2 Casechanging L 299
34.3 Removing formatting from text 0oL 301
34.4 Control variableso 301
345 Mapping totexto 302
VI Typesetting 304
35 The 13box module: Boxes 305
35.1 Creating and initializing boxes oL 0oL 305
35.2 Using boxes e 306
35.3 Measuring and setting box dimensions 0L 306
354 Box conditionals oL L L 307
35.5 The last box insertedo L oo 308
35.6 Constant boxes 308
35.7 Scratch boxes 308
35.8 Viewing box contents oL Lo 308
359 Boxesandcolor 309
35.10 Horizontal mode boxes Lo oL 309
35.11 Vertical mode boxes L 310
35.12 Using boxes efficiently oo oo 311
35.13 Affine transformations L Lo 312
35.14 Viewing part of abox oL L 315
35.15 Primitive box conditionals L oL oL 315
36 The I3coffins module: Coffin code layer 317
36.1 Controlling coffin poles L 317
36.2 Creating and initializing coffins oL 0oL 318
36.3 Setting coffin content and poles 319
36.4 Cofhin affine transformations 320
36.5 Joining and using coffins oo Lo oL 320
36.6 Measuring coffins L Lo 321
36.7 Coffin diagnostics L o 322
36.8 Constants and variables. L oL 322

ix

37 The I13color module: Color support

37.1 Colorin boxes e e e
37.2 Colormodels.
37.3 Color expressionso
37.4 Named colors e e
37.5 Selecting colorso
37.6 Colors for fills and strokes

37.6.1 Coloring math mode material
37.7 Multiple color models e
37.8 Exporting color specificationso 0000
379 Creating new colormodels L L oL

37.9.1 Color profiles

38 The I3graphics module: Graphics inclusion support

38.1 Graphics keys
38.2 Including graphics L
38.3 Utility functions
38.4 Showing and logging included graphics

39 The I3opacity module: Opacity (transparency) support
39.1 Selecting opacity

40 The 13pdf module: Core PDF support

40.1 Objects o e e
40.1.1 Named objects e
40.1.2 Indexed objects Lo o
40.1.3 General functions L Lo

40.2 Versiono e

40.3 Page (media) size o e

40.4 Compressiono i e e e e e

40.5 Destinations oL Lo e

VII Utilities

41 The I13benchmark module: Benchmarking
41.1 Benchmark L e

VIII Implementation

42 13bootstrap implementation

42.1 The \pdfstrcmp primitive in XqITpX
42.2 Loading support Lua code
42.3 Engine requirementso oo
42.4 The BTEX3 code environment L

43 13names implementation

324
324
324
326
327
328
328
328
329
329
330
331

332
332
333
333
334

335
335

336
336
336
337
337
338
338
338
339

340

341
341

343

344
344
344
345
346

348

44 13kernel-functions: kernel-reserved functions

Internal 13debug kernel functions
Internal kernel functions
44.3 Kernel backend functions L.

44.1
44.2

45 I3basics implementation

Renaming some TEX primitives (again)
Defining some constants o oL oL
Defining functions L e
Selecting tokenso
Gobbling tokens from input L L
Debugging and patching later definitions
Conditional processing and definitions
Dissecting a control sequence L oo
Exist or free o
Preliminaries for new functions oL
Defining new functions L oo o
Copying definitions oo
Undefining functions L o oo
Generating parameter text from argument count
Defining functions from a given number of arguments
Using the signature to define functions
Checking control sequence equality
Diagnostic functions o oo
Decomposing a macro definition L. ..
Doing nothing functions
Breaking out of mapping functions
Starting a paragraph L L L

45.1
45.2
45.3
45.4
45.5
45.6
45.7
45.8
45.9
45.10
45.11
45.12
45.13
45.14
45.15
45.16
45.17
45.18
45.19
45.20
45.21
45.22

46 13expan implementation
46.1 General expansionol e
46.2 Hand-tuned definitionso
46.3 Last-unbraced versionso
46.4 Preventing expansion Lo oo
46.5 Controlled expansion Lo
46.6 Defining function variants L
46.7 Definitions with the automated technique
46.8 Held-over variant generation L L.

47 13sort implementation

47.1
47.2
47.3
47.4
47.5
47.6

Variables

Finding available \toks registers
Protected user commands Lo Lo
Merge sort e e e e e
Expandable sorting Lo

Messages

Xi

374
374
375
382

384
384
386
386
387
390
390
391
397
399
402
403
405
406
406
407
408
411
411
413
414
414
414

416
416
420
423
425
425
426
436
438

48 13tl-analysis implementation 455

48.1 Internal functions o 455
48.2 Imternal format L 455
48.3 Variables and helper functions 456
484 Planof attack L 458
48.5 Disabling active characters Lo oL 459
48.6 First pass L e 461
48.7 Second PaSS . . . v i i e e e e e e e 466
48.8 Mapping through the analysis 469
48.9 Showing theresults oL o 470
48.10 Peeking ahead L Lo 472
A8.11 MeSSages . . . v v v v i e e e 479
49 13regex implementation 481
49.1 Planofattack 481
49.2 Helpers o . e e e 482
49.2.1 Constants and variables 485
49.2.2 Testing characters 485
49.2.3 Internal auxiliaries oL L 486
49.2.4 Character property tests L oo 489
49.2.5 Simple character escapeo 491

49.3 Compiling e 497
49.3.1 Variables used when compiling 498
49.3.2 Generic helpers used when compiling 499
49.3.3 Mode e 500
49.3.4 Framework oL L 502
49.3.5 Quantifiers 505
49.3.6 Raw characters L L 508
49.3.7 Character properties o 510
49.3.8 Anchoring and simple assertions L. 511
49.3.9 Character classes L e 511
49.3.10 Groups and alternations Lo 515
49.3.11 Catcodes and csnames e e 517
49.3.12Raw token lists with \u 521
49.3.130ther 525
49.3.14Showing regexeso e i 525

49.4 Building oL 532
49.4.1 Variables used while building 532
49.4.2 Framework 533
49.4.3 Helpers for building an NFA oL oL 536
49.4.4 Building classeso L 537
49.4.5 Building groupso Lo 539
49.4.6 Others oL 543

49.5 Matching 545
49.5.1 Variables used when matching 545
49.5.2 Matching: framework L. 548
49.5.3 Using states of the NFA oL oo oo 551
49.5.4 Actions when matching oL 552

49.6 Replacement L 554
49.6.1 Variables and helpers used in replacement 554

xii

49.6.2 Query and brace balance 0oL 556

49.6.3 Framework e 557
49.6.4 Submatches 560
49.6.5 Csnames in replacement 562
49.6.6 Characters in replacement L oL 563
49.6.7 Anerror 567

49.7 User functions oL o 567
49.7.1 Variables and helpers for user functions 571
49.7.2 Matching L 572
49.7.3 Extracting submatches o o000 573
49.7.4 Replacement L 578
49.7.5 Peeking ahead L Lo 581

49.8 MeSsages e e 587
49.9 Code for tracingo e 593
50 I13prg implementation 595
50.1 Primitive conditionals L oL o 595
50.2 Defining a set of conditional functionso 595
50.3 The boolean data type Lo 595
50.4 Internal auxiliaries L L 597
50.5 DBoolean expressionso 599
50.6 Logical loops o L e 603
50.7 Producing multiple copies 605
50.8 Detecting TEX's mode L L 606
50.9 Internal programming functions L L oL 607
51 I3sys implementation 609
51.1 Kernel code 609
51.1.1 Detecting the engine oL 609
51.1.2 Platform o 612
51.1.3 Configurations 613
51.1.4 Access to theshell 615

51.2 Dynamic (every job) code o 617
51.2.1 The name of thejob 617
51.2.2 Time and date L . 618
51.2.3 Random numbers L Lo Lo 619
51.2.4 Access totheshell 619

51.3 System queries 620
51.3.1 Held over from I13file L. 622

51.4 Last-minute code Lo 622
51.4.1 Detecting the output oL L. 622
51.4.2 Configurations e 623

xiii

52 13msg implementation
52.1 Internal auxiliaries L Lo
52.2 Creating messages« o v v i e
52.3 Messages: support functions and text
52.4 Showing messages: low level mechanism
52.5 Displaying messageso Lo
52.6 Kernel-specific functions
52.7 Internal messages Lo
52.8 Expandable errorso
52.9 Message formatting L oL
53 I13file implementation
53.1 Imput operations L Lo
53.1.1 Variables and constants
53.1.2 Stream managemento e
53.1.3 Reading input
53.2 Output operations e e e
53.2.1 Variables and constants
53.2.2 Internal auxiliaries oo oL
53.3 Stream managementol e
53.3.1 Deferred writing
53.3.2 Immediate writing L o oo
53.3.3 Special characters for writing L.
53.3.4 Hard-wrapping lines to a character count
53.4 Fileoperations
53.4.1 Internal auxiliaries Lo L
53.5 GetldInfo L
53.6 Checking the version of kernel dependencies
53.7 Messages
53.8 Functions delayed from earlier modules

54 I3luatex implementation

54.1 BreakingouttoLua. oL
54.2 MeSSageso e e

54.3 Lua functions for internal use

54.4 Preserving iniTeX Lua data for runs

55 13legacy implementation

Xiv

624
624
624
626
627
629
638
639
646
647

649
649
649
650
653
656
656
657
658
660
661
662
662
672
673
689
690
692
693

694
694
695
695
701

703

56 13tl implementation
56.1 Functions. L
56.2 Constant token lists L
56.3 Adding to token list variables oL
56.4 Internal quarks and quark-query functions
56.5 Reassigning token list category codes oL
56.6 Modifying token list variables
56.7 Token list conditionals Lo L Lo L
56.8 Mapping over token lists Lo
56.9 Using token lists L o
56.10 Working with the contents of token lists
56.11 The first token from a token list
56.12 Token by token changes. oL
56.13 Using a singleitem L oo
56.14 Viewing token lists L L o
56.15 Internal scan marks Lo L Lo
56.16 Scratch token lists L oL
57 13tl-build implementation
58 I3str implementation
58.1 Internal auxiliaries
58.2 Creating and setting string variables
58.3 Modifying string variables oo
58.4 String comparisons
58.5 Mapping over stringso L
58.6 Accessing specific characters in a stringo L
58.7 Counting characters Lo L
58.8 The first character in a string oL
58.9 String manipulation oL oL
58.10 Viewing strings L e
59 I3str-convert implementation
59.1 Helpers e
59.1.1 Variables and constants
59.2 String conditionals L oL
59.3 Conversions
59.3.1 Producing one byte or character
59.3.2 Mapping functions for conversions
59.3.3 Error-reporting during conversion
59.3.4 Framework for conversions
59.3.5 Byte unescape and escape
59.3.6 Native strings L Lo
59.3.7 clist oL
59.3.8 8Dbit encodings
59.4 Messageso
59.5 Escaping definitions L oL oo
59.5.1 Unescape methods,
59.5.2 Escape methods Lo L.
59.6 Encoding definitions L oL oL

XV

705
705
707
707
710
711
716
720
725
27
728
731
736
738
741
743
743

745

59.6.1 UTF-8 support e
59.6.2 UTF-16 support e
59.6.3 UTF-32 supporto e
59.7 PDF names and strings by expansion
59.7.1 1SO 8859 support
60 13quark implementation
60.1 Quarks
60.2 Scan marks Lo
61 13seq implementation
61.1 Allocation and initialization
61.2 Appending data to eitherend 0oL oL
61.3 Modifying sequences L o
61.4 Sequence conditionals
61.5 Recovering data from sequences
61.6 Mapping over SEqUENCES . . .« v v v v v v e e e e e e e e e
61.7 Using sequences v o it e e e e e
61.8 Sequence stacks
61.9 Viewing sequences v it e e e e e e
61.10 Scratch sequences o . i e e e e
62 13int implementation
62.1 Integer expressionso e e e
62.2 Creating and initializing integers 0oL
62.3 Setting and incrementing integers Lo
62.4 Using integers e e e
62.5 Integer expression conditionalso
62.6 Integer expression loops. Lo e
62.7 Integer step functions
62.8 Formatting integerso Lo
62.9 Converting from other formats to integers
62.10 Viewing integer o
62.11 Random integers L
62.12 Constant integers L
62.13 Scratch integers L
62.14 Integers for earlier modules Lo
63 13flag implementation
63.1 Protected flag commandso Lo
63.2 Expandable flag commands oL o000
63.3 Old n-type flag commands L oo

XVi

834
835
839
840
844
846
850
855
856
856
857

858
859
861
863
865
865
869
870
872
878
880
881
881
882
882

64 13clist implementation
Removing spaces around items Lo oL

64.1
64.2
64.3
64.4
64.5
64.6
64.7
64.8
64.9
64.10
64.11

Allocation and initialization
Adding data to comma lists
Comma lists as stacks . . .
Modifying comma lists . .
Comma list conditionals .
Mapping over comma lists
Using comma lists
Using a single item
Viewing comma lists . . .
Scratch comma lists

65 13token implementation

65.1
65.2
65.3
65.4
65.5
65.6

Internal auxiliaries

Manipulating and interrogating character tokens

Creating character tokens
Generic tokens
Token conditionals

Peeking ahead at the next token

66 13prop implementation

66.1
66.2
66.3

Internal auxiliaries
Structure of a property list
Allocation and initialization

66.4 Accessing data in property lists L.
66.5 Removing data from property lists
66.6 Adding data to property lists o oo

66.7
66.8

Property list conditionals .
Mapping over property lists

66.9 Uses of mapping over property lists

66.10

Viewing property lists . . .

67 13skip implementation

67.1
67.2
67.3
67.4
67.5
67.6
67.7
67.8
67.9
67.10
67.11
67.12
67.13
67.14
67.15
67.16

Length primitives renamed
Internal auxiliaries

Creating and initializing dim variables

Setting dim variables . . .

Utilities for dimension calculations
Dimension expression conditionals 0o oL

Dimension expression loops
Dimension step functions .

Using dim expressions and variables
Conversion of dim to other units

Viewing dim variables . . .
Constant dimensions . . .
Scratch dimensions

Creating and initializing skip variables

Setting skip variables . .
Skip expression conditionals

xvii

887
888
889
891
892
894
897
898
902
904
906
907

908
908
908
911
914
916
927

934
935
936
938
945
948
951
953
955
957
958

67.17 Using skip expressions and variables
67.18 Inserting skips into the output oL L.
67.19 Viewing skip variables oL oo
67.20 Constant skips L
67.21 Scratch skips L
67.22 Creating and initializing muskip variables
67.23 Setting muskip variables L Lo
67.24 Using muskip expressions and variables
67.25 Viewing muskip variables oo oL oL
67.26 Constant muskips Lo
67.27 Scratch muskipso Lo

68 13keys implementation

68.1 Low-level interface
68.2 Constants and variables.

68.2.1 Internal auxiliaries o oL
68.3 The key defining mechanism L. 0oL
68.4 Turning properties into actions L Lo
68.5 Creating key properties Lo oL o
68.6 Setting keys
68.7 Utilities e
68.8 MeSSAZES .« . v v i e e e e e e e e e e e

69 13intarray implementation
69.1 Lua implementationo L Lo
69.1.1 Allocating arrays o
69.1.2 Array items e
69.1.3 Working with contents of integer arrays
69.2 Font dimension based implementation
69.2.1 Allocating arrayso
69.2.2 Arrayitems
69.2.3 Working with contents of integer arrays
69.3 Common parts

70 13fp implementation

71 13fp-aux implementation
71.1 Access to primitives
71.2 Internal representation Lo Lo L
71.3 Using arguments and \@@_sep:s« o vt
71.4 Constants, and structure of floating points
71.5 Overflow, underflow, and exact zero
71.6 Expanding after a floating point number oL
71.7 Other floating point types oo o
71.8 Packing digits e
71.9 Decimate (dividing by a power of 10)
71.10 Functions for use within primitive conditional branches
71.11 Integer floating points L L
71.12 Small integer floating points
71.13 Fast string comparison oL

xXviii

980
980

984
984
991
993
994
997
1004
1010
1019
1022

1024
1024
1024
1027
1029
1030
1031
1032
1034
1036

1037

71.14 Name of a function from its 13fp-parse name

71.15 Messages

72 13fp-traps implementation
721 Flags . . . o o o o e e e e
72.2 Traps e e
72.3 Errors e e e
724 Messageso

73 13fp-round implementation
73.1 Rounding tools
73.2 The round function

74 13fp-parse implementation
741 Work plan e e e e
74.1.1 Storing results Lo
74.1.2 Precedence and infix operators
74.1.3 Prefix operators, parentheses, and functions
74.1.4 Numbers and reading tokens one by one
74.2 Main auxiliary functions oL oo
74.3 Helpers e
74.4 Parsing onenumber Lo Lo
74.4.1 Numbers: trimming leading zeros

4.5

74.6
4.7

74.4.2 Number: small significand
74.4.3 Number: large significand

74.4.4 Number: beyond 16 digits, rounding

74.4.5 Number: finding the exponent

Constants, functions and prefix operators

74.5.1 Prefix operators

74.5.2 Constants e e e e
74.5.3 Functions
Main functions Lo
Infix operators
74.7.1 Closing parentheses and commas

74.7.2 Usual infix operators

74.7.3 Juxtapositiono Lo

74.7.4 Multi-character cases

74.7.5 Ternary operator

T4.7.6 Comparisons oot e e e e e
74.8 Tools for functions L. o
T4.9 MesSSageso .o

75 13fp-assign implementation

75.1 Assigning values L L
75.2 Updating values e
75.3 Showing values L
75.4 Some useful constants and scratch variables

Xix

76 13fp-logic implementation
76.1 Syntax of internal functions
76.2 Tests . . . o o o e
76.3 Comparison e
76.4 Floating point expression loops 0.
76.5 Extrema
76.6 Boolean operations
76.7 Ternary operator Lo e

77 13fp-basics implementation
77.1 Addition and subtraction oL oo
77.1.1 Sign, exponent, and special numbers
77.1.2 Absolute additiono Lo
77.1.3 Absolute subtraction
77.2 Multiplication Lo
77.2.1 Signs, and special numbers
77.2.2 Absolute multiplication L.
77.3 Division e e e e
77.3.1 Signs, and special numberso 0000
7732 Workplano
77.3.3 Implementing the significand division
TT.4 Square Toot e e e
77.5 About the sign and exponent
77.6 Operations on tuples

78 13fp-extended implementation
78.1 Description of fixed point numbers
78.2 Helpers for numbers with extended precision
78.3 Multiplying a fixed point number by a short one
78.4 Dividing a fixed point number by a small integer
78.5 Adding and subtracting fixed points
78.6 Multiplying fixed points oL o o
78.7 Combining product and sum of fixed points
78.8 Extended-precision floating point numbers o000
78.9 Dividing extended-precision numberso Lo
78.10 Inverse square root of extended precision numbers
78.11 Converting from fixed point to floating point

79 13fp-expo implementation
79.1 Logarithm e
79.1.1 Workplan
79.1.2 Some constants e e
79.1.3 Sign, exponent, and special numberso
79.1.4 AbsoluteIn
79.2 Exponential
79.2.1 Sign, exponent, and special numbers
79.3 Power. e e e e e
79.4 Factorial e e

80 13fp-trig implementatio

n

80.1 Direct trigonometric functions . . .
80.1.1 Filtering special cases
80.1.2 Distinguishing small and large arguments
80.1.3 Small arguments

80.1.4 Argument reduction in degrees
80.1.5 Argument reduction in radians

80.1.6 Computing the power series .
80.2 Inverse trigonometric functions . .

80.2.1 Arctangent a

nd arccotangent

80.2.2 Arcsine and arccosine
80.2.3 Arccosecant and arcsecant . .

81 13fp-convert implementation
81.1 Dealing with tuples
81.2 Trimming trailing zeros

81.3 Scientific notation

81.4 Decimal representation
81.5 Token list representation
81.6 Formatting
81.7 Convert to dimension or integer . .
81.8 Convert from a dimension
81.9 Useandeval L
81.10 Convert an array of floating points to a comma list

82 13fp-random implementation
82.1 Engine support Lo e
82.2 Random floating point
82.3 Random integer

83 13fp-types implementation

83.1 Support for types
83.2 Dispatch according

84 13fp-symbolic implemen

to the type . . .

tation

84.1 MISC . . . o e e e e e

84.2 Building blocks for

expressions . . .

84.3 Expanding after a symbolic expression
84.4 Applying infix operators to expressions
84.5 Applying prefix functions to expressions
84.6 Conversions e
84.7 Identifiers
84.8 Declaring variables and assigning values
84.9 Messages e e
84.10 Road-map

85 13fp-functions implementation

85.1 Declaring functions

85.2 Defining functions by their expression

XX1

86 13fparray implementation 1270

86.1 Allocating arrays o it e 1270
86.2 Array items 1271

87 13bitset implementation 1275
87.1 MesSsages o e e e 1280

88 13cctab implementation 1281
88.1 Variables L 1281
88.2 Allocating category code tables L. 1282
88.3 Saving category code tables Lo 1283
88.4 Using category code tables 0oL 1284
88.5 Category code table conditionals L. 1289
88.6 Constant category code tables oL 1291
88.7 MeSSAZES « .« v v v e e e e e e e e e e e 1292

89 13unicode implementation 1294
89.1 User functions oL 1294
89.2 Dataloader e 1298

90 13text implementation 1311
90.1 Internal auxiliaries L o s 1311
90.2 Utilities e e e e e 1312
90.3 Codepoint utilities e 1315
90.4 Configuration variables oL oo 1317
90.5 Expansion to formatted text Lo oL 1319

91 I13text-case implementation 1328
91.1 Casechanging L 1328

92 I13text-map implementation 1363
92.1 Mapping totext oL 1363
92.1.1 Common code o 1363
92.2 Grapheme mapping L. 1367
92.3 Word break mapping 1370
92.4 Inline mappings« . ..o e e e 1373

93 13text-purify implementation 1375
93.1 Purifying text 1375
93.2 Accent and letter-like data for purifying text 1380

xxii

94 13box implementation
94.1 Support code
94.2 Creating and initializing boxes

94.3 Measuring and setting box dimensions L.
94.4 Using boxes
94.5 Box conditionals Lo
94.6 The last box inserted L Lo
94.7 Constant boxes
94.8 Scratch boxes
94.9 Viewing box contents oL oL
94.10 Horizontal mode boxes L oo
94.11 Vertical mode boxes L
94.12 Affine transformations Lo
94.13 Viewing part of abox L o o
95 I3coffins implementation
95.1 Coflins: data structures and general variables
95.2 Basic coffin functionso Lo
95.3 Measuring coffins oL o L
95.4 Coffins: handle and pole management
95.5 Coffins: calculation of pole intersections
95.6 Affine transformations Lo oL
95.7 Aligning and typesetting of coffins L.
95.8 Coflin diagnostics L
95.9 MeSSageso i e e e e e
96 13color implementation
96.1 Basics
96.2 Predefined color nameso L oo
96.3 Setupo
96.4 Utility functions
96.5 Model conversion e e e e e e
96.6 Color expressionso e
96.7 Selecting colors (and color models)
96.8 Mathcolor L
96.9 Fill and strokecoloro L
96.10 Defining named colors L L
96.11 Exporting colors oL
96.12 Additional color models oL
96.13 Applying profileso
96.14 Diagnostics. oL e
96.15 MeESSAZES « .« v v v e e e e e e e e e e e e e e
97 13graphics implementation
97.1 Graphics keys
97.2 Obtaining bounding box data L0
97.3 Utility functions L
974 Messages

98 I13opacity implementation

xxiii

1387
1387
1387
1388
1389
1390
1390
1390
1391
1391
1392
1394
1397
1406

1409
1409
1410
1416
1416
1420
1422
1430
1435
1441

1442
1442
1443
1444
1444
1445
1446
1457
1459
1462
1462
1465
1467
1481
1482
1483

1486
1486
1487
1493
1495

1496

99 13pdf implementation 1498

99.1 Compression v v v v i e e e e e e e e e e 1498
99.2 Objects o o 1499
99.3 Version Lo e 1503
99.4 Pagesize 1504
99.5 Destinations Lo e 1505
99.6 PDF Page size (media box) 1505
10d3benchmark implementation 1507
100.1 Benchmarking code Lo o 1507
100.1.1 Raw measurement oo 1507
100.1.2Main benchmarking oo 1508
100.1.3Display 1511
100.2 Benchmark tictoc. Lo oo 1512
10113deprecation implementation 1514
101.1 Patching definitions to deprecate 1514
101.2 Deprecated I3basics functionso oL 1516
101.3 Deprecated I13file functions oo oL 1516
101.4 Deprecated I3keys functions 1516
101.5 Deprecated 13msg functions 1517
101.6 Deprecated 13pdf functions, 1517
101.7 Deprecated 13prg functions L Lo oo 1518
101.8 Deprecated 13regex functions oL 1518
101.9 Deprecated I3str functions oo oL 1518
101.10Deprecated 13seq functionso oL 1519
101.11Deprecated 13sys functions 1520
101.12Deprecated 13text functions 1520
101.13Deprecated 13tl functionso L oo 1520
101.14Deprecated 13token functions Lo oL 1521
101.15Deprecated 13prop functions 1523
1023debug implementation 1524
Index 1548

XXiv

Part 1
Introduction

Chapter 1

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the ITEX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables

XTEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne. All macros that appear in the argument are expanded. An internal
error will occur if the result of expansion inside a c-type argument is not a series
of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example

\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favored over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but uses \expanded primitive. Para-
meter character (usually #) in the argument need not be doubled. Functions which
feature an e-type argument may be expandable.

f The £ specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a (space token), it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \1l_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl1l }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D stands for Do not use. All of the TEX primitives are initially \1let to a D name,
and some are then given a second name. These functions have no standardized
syntax, they are engine dependent and their name can change without warning,
thus their use is strongly discouraged in package code: programmers should instead
use the interfaces documented in interface3.pdf.

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

¢ Constant: global parameters whose value should not be changed.

g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module' name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bitset a set of bits (a string made up of a series of 0 and 1 tokens that are accessed
by position).

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.
skip “Rubber” lengths.

str String variables: contain character data.

t1 Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box align-
ment operations.

flag Non-negative integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.
regex Regular expression.

seq “Sequence”: a data type used to implement lists (with access at both ends) and
stacks.

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

1.1.1 Behavior of c-type arguments when the N-type token re-
sulting from expansion is undefined

When c-type expansion is applied, it will produce an N-type token to be consumed by
the underlying function. If the result of this process is a token which is undefined, TEX’s
behavior is to make it equal to \scan_stop: (\relax).

This will likely lead to low-level errors if it occurs in contexts where expl3 expects a
“variable”; e.g. a prop, seq, etc. Therefore, the programmer should ensure that c-type
expansion is only applied when the resulting N-type token will definitely exist, i.e., when
it is either defined prior to the application of the c-type expansion or will be by the
underlying N-type function.

1.1.2 Scratch variables

Modules focussed on variable usage typically provide four scratch variables, two local
and two global, with names of the form \(scope)_tmpa_(type)/\(scope)_tmpb_({type).
These are never used by the core code. The nature of TEX grouping means that as
with any other scratch variable, these should only be set and used with no intervening
third-party code.

There are two more special types of constants:

q Quark constants.

s Scan mark constants.

Similarly, each quark or scan mark name starts with the module name, but doesn’t end
with a variable type, because the type is already marked by the prefix q or s. Some
general quarks and scan marks provided by KTEX3 don’t start with a module name, for
example \s_stop. See documentation of quarks and scan marks in Chapter VIII for more
info.

1.1.3 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.? On the other hand, some “variables” are
actually registers that must be initialized and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2TEXnically, functions with no arguments are \long while token list variables are not.

\ExplSyntaxOn
\ExplSyntax0ff

\seq_new:N
\seq_new:c

\cs_to_str:N *

\seq_map_function:NN

1.2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N (seq var)

When a number of variants are described, the arguments are usually illustrated only
for the base function. Here, (seq var) indicates that \seq_new:N expects a sequence
variable. From the argument specifier, \seq_new: c also expects a sequence variable, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq var) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF x

\1_tmpa_tl

\token_to_str:N =

\sys_if_engine_xetex:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that three functions are available:
e \sys_if_engine_xetex:T
e \sys_if_engine_xetex:F
e \sys_if_engine_xetex:TF

Usually, the illustration will use the TF variant, and so both (true code) and (false
code) will be shown. The two variant forms T and F take only (true code) and (false
code), respectively. Here, the star also shows that this function is expandable. With
some minor exceptions, all conditional functions in the expl3 modules should be defined
in this way.

Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in ITEX 2¢ or plain TEX. In these cases,
the text will include an extra “TEpXhackers note” section:

\token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or KTEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Addition dates For functions added to expl3 after 2020-02-02 (the point at which is was
integrated into the ATEX kernel), the date of addition is included in the documentation
as “New”.

Changes to behavior Where the documented behavior of a function changes after
it is first introduced, the date of the update will also be given. This means that the
programmer can be sure that any release of expl3 after the date given will contain the
function of interest with expected behavior as described. Note that changes to code
internals, including bug fixes, are not recorded in this way unless they impact on the
expected behavior.

1.3 Formal language conventions which apply gener-
ally

As this is a formal reference guide for IWTEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarized
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,

and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

1.4 TgX concepts not supported by BKTEX3

The TEX concept of an “\outer” macro is not supported at all by I¥TEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

Part 11
Bootstrapping

\ExplSyntaxOn
\ExplSyntax0ff

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2023-08-03

Chapter 2

The I3bootstrap module
Bootstrap code

2.1 Using the KTEX3 modules

The modules documented in interface3 (and this file) are designed to be used on top of
TEX 2¢ and are already pre-loaded since ITEX 2¢ 2020-02-02. To support older formats,
the \usepackage{expl3} or \RequirePackage{expl3} instructions are still available to
load them all as one.

As the modules use a coding syntax different from standard IWTEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntaxOff

The \ExplSyntaxOn function switches to a category code régime in which spaces and
new lines are ignored, and in which the colon (:) and underscore (_) are treated as
“letters”, thus allowing access to the names of code functions and variables. Within this
environment, ~ is used to input a space. The \ExplSyntax0ff reverts to the document

category code régime.

TEXhackers note: Spaces introduced by ~ behave much in the same way as normal space
characters in the standard category code régime: they are ignored after a control word or at
the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not
ignored at the end of a line.

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IXTEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntax0On for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
ITEX 2¢ provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/(month)/(day) or in the ISO date format
(year)-(month)-(day). If the (version) is given then a leading v is optional: if given as
a “pure” version string, a v will be prepended.

10

\GetIdInfo \GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual ITEX 2¢ category codes and the
IXTEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

11

Chapter 3

The I13names module
Namespace for primitives

3.1 Setting up the KTEX3 programming language

This module is at the core of the W TEX3 programming language. It performs the following
tasks:

 defines new names for all TEX primitives;
e emulate required primitives not provided by default in LuaTgX;
o switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which
should not be used directly within X TEX3 code (outside of “kernel-level” code). As such,
the primitives are not documented here: The TgXbook, TEX by Topic and the manuals
for pdfTEX, XHIEX, LualgX, pPIEX and uplEX should be consulted for details of the
primitives. These are named \tex_(name):D, typically based on the primitive’s (name)
in pdfTEX and omitting a leading pdf when the primitive is not related to pdf output.

12

Part II1
Programming Flow

13

\prg_do_nothing: x*

\scan_stop:

\group_begin:
\group_end:

Chapter 4

The I3basics module
Basic definitions

As the name suggests, this module holds some basic definitions which are needed by most
or all other modules in this set.

Here we describe those functions that are used all over the place. By that, we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

4.2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

TEXhackers note: These are the TEX primitives \begingroup and \endgroup.

14

\group_insert_after:N

\group_show_list:
\group_log_list:

New: 2021-05-11

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends.
The list of (tokens) to be inserted is empty at the beginning of a group: multiple appli-
cations of \group_insert_after:N may be used to build the inserted list one (token)
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group), namely a } if standard category codes apply.

TgXhackers note: This is the TEX primitive \aftergroup.

\group_show_list:

\group_log_list:

Display (to the terminal or log file) a list of the groups that are currently opened. This
is intended for tracking down problems.

TEXhackers note: This is a wrapper around the e-TEX primitive \showgroups.

4.3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an e-type or x-type
expansion. In contrast, “protected” functions are not expanded within e and x expan-
sions.

4.3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset :Npn. The definition
is global and does not result in an error if the function is already defined.

15

\cs_new:
\cs_new:
\cs_new:
\cs_new:
\cs_new:
\cs_new:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an e-type or x-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define
base functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 9.1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
definition is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an e-type or or x-type argument. The definition is
global and an error results if the (function) is already defined.

16

\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

\cs_set:Npn
\cs_set:cpn
\cs_set:Npe
\cs_set:cpe
\cs_set:Npx
\cs_set:cpx

Updated: 2023-09-27

\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

\cs_new_protected_nopar:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
(function) will not expand within an e-type or x-type argument. The definition is
global and an error results if the (function) is already defined.

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an e-type or x-type argument.

17

\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

\cs_gset:Npn
\cs_gset:cpn
\cs_gset:Npe
\cs_gset:cpe
\cs_gset :Npx
\cs_gset:cpx

Updated: 2023-09-27

\cs_gset_nopar:
\cs_gset_nopar:
\cs_gset_nopar:
\cs_gset_nopar:
\cs_gset_nopar:
\cs_gset_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

\cs_gset_protected:
\cs_gset_protected:
\cs_gset_protected:
\cs_gset_protected:
\cs_gset_protected:
\cs_gset_protected:

Npn
cpn
Npe
cpe
Npx
cpx

Updated: 2023-09-27

\cs_set_protected_nopar:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an e-type or x-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens.
The assignment of a meaning to the (function) is not restricted to the current TEX
group level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {({code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an e-type or
x-type argument.

18

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {(code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npe
\cs_gset_protected_nopar:cpe
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

Updated: 2023-09-27

\cs_new:Nn
\cs_new:(cn|Ne|ce)

Updated: 2023-09-27

\cs_new_nopar:Nn
\cs_new_nopar:(cn|Ne|ce)

Updated: 2023-09-27

\cs_new_protected:Nn
\cs_new_protected: (cn|Ne|ce)

Updated: 2023-09-27

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens.
The assignment of a meaning to the (function) is not restricted to the current TEX
group level: the assignment is global. The (function) will not expand within an e-type
or x-type argument.

4.3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
definition is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an e-type or x-type argument. The definition is global
and an error results if the (function) is already defined.

\cs_new_protected_nopar:Nn

\cs_new_protected_nopar:Nn (function) {(code)}

\cs_new_protected_nopar : (cn\Ne|ce)

Updated: 2023-09-27

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
(function) will not expand within an e-type or x-type argument. The definition is
global and an error results if the (function) is already defined.

19

\cs_set:Nn
\cs_set:(cn|Ne|ce)

Updated: 2023-09-27

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Ne|ce)

Updated: 2023-09-27

\cs_set_protected:Nn
\cs_set_protected:(cn|Ne|ce)

Updated: 2023-09-27

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an e-type or x-type argument. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected_nopar:Nn

\cs_set_protected_nopar:Nn (function) {(code)}

\cs_set_protected_nopar:(cn|Ne|ce)

Updated: 2023-09-27

\cs_gset:Nn
\cs_gset:(cn|Ne|ce)

Updated: 2023-09-27

\cs_gset_nopar:Nn
\cs_gset_nopar:(cn|Ne|ce)

Updated: 2023-09-27

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
(function) will not expand within an e-type or x-type argument. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_gset:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is global.

\cs_gset_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is global.

20

\cs_gset_protected:Nn
\cs_gset_protected:(cn|Ne|ce)

Updated: 2023-09-27

\cs_gset_protected:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an e-type or x-type argument. The assignment of a
meaning to the (function) is global.

\cs_gset_protected_nopar:Nn

\cs_gset_protected_nopar:Nn (function) {(code)}

\cs_gset_protected_nopar:(cn|Ne|ce)

Updated: 2023-09-27

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
(function) will not expand within an e-type or x-type argument. The assignment of a
meaning to the (function) is global.

\cs_generate_from_arg_count:
\cs_generate_from_arg_count:

NNnn \cs_generate_from_arg_count:NNnn (function) (creator) {(number)}
(NNno|cNnn|Ncnn) {(code)}

\cs_new_eq:NN
\cs_new_eq: (Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

Uses the (creator) function (which should have signature Npn, for example \cs_-
new:Npn) to define a (function) which takes (number) arguments and has (code) as
replacement text. The (number) of arguments is an integer expression, evaluated as
detailed for \int_eval:n.

4.3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (csi) (cs2)

\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequences) or (token). The second control sequence may subsequently be altered with-
out affecting the copy.

\cs_set_eq:NN (cs1) (cs2)

\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to the (control sequence;) is restricted to the
current TEX group level.

21

\cs_gset_eq:NN

\cs_gset_eq:(Nc|cN|cc)

\cs_undefine:N

\cs_undefine:

\cs_meaning:N
\cs_meaning:c

\cs_show:N

\cs_show:

\cs_log:N

\cs_log:

\use:c

*

\cs_gset_eq:NN (csi1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences)
(or (token)). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to the (control sequence;) is not restricted to
the current TEX group level: the assignment is global.

4.3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

4.3.6 Showing control sequences

\cs_meaning:N (control sequence)
This function expands to the meaning of the (control sequence) control sequence. For

a macro, this includes the (replacement text).

TEXhackers note: This is the TEX primitive \meaning. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports
undefined arguments.

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N
which displays the result in the terminal.

4.3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-
type arguments the (control sequence name) must, when fully expanded, consist of
character tokens, typically a mixture of category code 10 (space), 11 (letter) and 12
(other).

As an example of the \use:c function, both

22

\cs_if_exist_use:N *
\cs_if_exist_use:c *
\cs_if_exist_use:NTF *
\cs_if_exist_use:cTF *

\cs:w *
\cs_end: *

\cs_to_str:N *

\use:c { abc}
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc }
\use:c { \tl_use:N \1_my_tl }

would be equivalent to
\abc

after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it
is inserts the (control sequence) into the input stream followed by the (true code).
Otherwise the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for (control sequence name) may be
literal material or from other expandable functions. The (control sequence name)
must, when fully expanded, consist of character tokens which are not active: typically of
category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1._my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code
12 (other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an e-type or x-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

23

\cs_split_function:N *

\cs_prefix_spec:N *

\cs_parameter_spec:N =%

New: 2022-06-24

4.4 Analyzing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e., the part before the colon) and the
(signature) (i.e., after the colon). This information is then placed in the input stream
in three parts: the (name), the (signature) and a logic token indicating if a colon was
found (to differentiate variables from function names). The (name) does not include the
escape character, and both the (name) and (signature) are made up of tokens with
category code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_parameter_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX parameter specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn

leaves #1#2 in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

24

\cs_replacement_spec:N * \cs_replacement_spec:N (token)

\cs_replacement_spec:c

*

\use:n
\use:nn
\use:nnn
\use :nnnn

*
*
*
*

If the (token) is a macro, this function leaves the replacement text in input stream as
a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1,,y#2 in the input stream. If the (token) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

4.5 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {{group1)}

\use:nn {(group:)} {(group:)}

\use:nnn {(group:)} {(group:)} {(groups)}

\use:nnnn {(group:)} {(group:)} {(groups)} {{groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } %}
results in the input stream containing
abc { def }
i.e. only the outer braces are removed.

hackers note: The \use:n function is equivalent to I& 2¢’s \@firstofone.
TEX q

25

\use_i:nn {(arg:i)} {(arg:)}

\use_i:nnn {(argi)} {(arg:)} {(args:)}

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

\use_i:nnnnn {(argi)} {(arg:)} {(args)} {(args)} {(args)}

\use_i:nnnnnn {(arg:)} {(argz:)} {(args)} {(args)} {{args)} {(arge)}

\use_i:nnnnnnn {(arg:)} {(args)} {(args)} {({args)} {({args)} {({args)} {(argr)}
\use_i:nnnnnnnn {(arg:)} {(arg:)} {({args)} {(args)} {({args)} {(arges)} {({argr)}
{(args)}

\use_i:nnnnnnnnn {(arg:)} {(arge)} {(args)} {(args)} {(args)} {(args)} {(arg:)}
{(args)} {(argo)}

These functions absorb a number (n) arguments from the input stream. They then
discard all arguments other than that indicated by the roman numeral, which is left in
the input stream. For example, \use_i:nn discards the second argument, and leaves the
content of the first argument in the input stream. The category code of these tokens is
also fixed (if it has not already been by some other absorption). A single expansion is
needed for the functions to take effect.

\use_i:nn
\use_ii:nn
\use_i:nnn
\use_ii:nnn
\use_iii:nnn
\use_i:nnnn
\use_ii:nnnn
\use_iii:nnnn
\use_iv:nnnn
\use_i :nnnnn
\use_ii:nnnnn
\use_iii:nnnnn
\use_iv:nnnnn
\use_v:nnnnn
\use_i:nnnnnn
\use_ii:nnnnnn
\use_iii:nnnnnn
\use_iv:nnnnnn
\use_v:nnnnnn
\use_vi:nnnnnn
\use_i :nnnnnnn
\use_ii:nnnnnnn
\use_iii:nnnnnnn
\use_iv:nnnnnnn
\use_v:nnnnnnn
\use_vi:nnnnnnn
\use_vii:nnnnnnn
\use_i :nnnnnnnn
\use_ii:nnnnnnnn
\use_iii:nnnnnnnn
\use_iv:nnnnnnnn
\use_v:nnnnnnnn
\use_vi:nnnnnnnn
\use_vii:nnnnnnnn
\use_viii:nnnnnnnn
\use_i :nnnnnnnnn
\use_ii:nnnnnnnnn
\use_iii:nnnnnnnnn
\use_iv:nnnnnnnnn
\use_v:nnnnnnnnn
\use_vi:nnnnnnnnn
\use_vii:nnnnnnnnn
\use_viii:nnnnnnnnn
\use_ix:nnnnnnnnn

b D D I TR R S D D S S P, P D S S S . S S . e D S S N S e S, P S D S S . P R R i . P S o

26

\use_i_ii:nnn * \use_i_ii:nnn {(arg:)} {(arge)} {(args)}

\use_ii_i:nn *

\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:

n *
nn *
nnn *
nnnn *
nnnnn *
nnnnnn *
nnnnnnn *
nnnnnnnn *
nnnnnnnnn

\use:e *

Updated: 2023-07-05

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_ii_i:nn {(argi)} {(arg:)}

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

\use_none:n {(groupi)}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e., an N argument).

TEXhackers note: These are equivalent to K'TEX 2¢’s \@gobble, \@gobbletwo, etc.

\use:e {(expandable tokens)}

Fully expands the (token 1ist) in an e-type manner, in which parameter character
(usually #) need not be doubled, and the function remains fully expandable.

TEXhackers note: \use:e is a wrapper around the primitive \expanded. It requires two
expansions to complete its action.

4.5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w * \use_none_delimit_by_q_nil:w (balanced text) \q_nil
\use_none_delimit_by_q_stop:w * \use_none_delimit_by_q_stop:w (balanced text) \g_stop
\use_none_delimit_by_q_recursion_stop:w x \use_none_delimit_by_q_recursion_stop:w (balanced text)

\g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in
the function name, leaving nothing in the input stream.

27

\use_i_delimit_by_qg_nil:nw * \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text) \g_nil
\use_i_delimit_by_q_stop:nw * \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced text)
\use_i_delimit_by_q_recursion_stop:nw * \g_stop

\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)} (balanced
text) \g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

4.6 Predicates and conditionals

IXTEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending
on its result, either the code supplied as the (true code) or the (false code).
These arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {{false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative
can operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if :nTF
{ \cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl }
{{true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

28

\cs_if_eq_p:NN
\cs_if_eq_p:(Nc|cN|cc)
\cs_if_eq:NNTF
\cs_if_eq:(Nc|cN|cc)TF

X % X ot

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:cTF

\if_true:
\if_false:
\else:

\fi:
\reverse_if:N

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and ETEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

4.6.1 Tests on control sequences

\cs_if_eq_p:NN (cs1) (cs2)

\cs_if_eq:NNTF (cs1) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are
the same, i.e., if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or
another control sequence type), and its meaning is not the primitive \relax token. This
is different from \if_cs_exist:N, which evaluates to true if passed the token \relax
as an argument.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

This test is the negation of the above \cs_if_exist:NTF.

4.6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_, except for \if :w.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false
code). \reverse_if:N reverses any two-way primitive conditional. \else: and \fi:
delimit the branches of the conditional. The function \or: is documented in I3int and
used in case switches.

TEXhackers note: \if_true: and \if_false: are equivalent to their corresponding TEX
primitive conditionals \iftrue and \iffalse; \else: and \fi: are the TEX primitives \else
and \fi; \reverse_if:N is the e-TEX primitive \unless.

29

\if_meaning:w * \if_meaning:w (arg:) (arg:) (true code) \else: (false code) \fi:

\if:w

*

\if _meaning:w executes (true code) when (arg;) and (args) are the same, otherwise
it executes (false code). (arg;) and (args) could be functions, variables, tokens; in all
cases the unexpanded definitions are compared.

TEXhackers note: This is the TEX primitive \ifx.

\if:w (token(s)) (true code) \else: (false code) \fi:

\if_charcode:w x \if_catcode:w (token(s)) (true code) \else: (false code) \fi:

\if _catcode:w

*

\if_cs_exist:N x
\if _cs_exist:w *

\if_mode_horizontal:
\if_mode_vertical:
\if_mode_math:
\if_mode_inner:

L

\if_charcode:w is an alternative name for \if :w. These conditionals expand (token(s))
until two unexpandable tokens (token;) and (tokensy) are found; any further tokens up
to the next unbalanced \else: are the true branch, ending with (true code). It is
executed if the condition is fulfilled, otherwise (false code) is executed. You can omit
\else: when just in front of \fi: and you can nest \if...\else:...\fi: constructs
inside the true branch or the (false code). With \exp_not:N, you can prevent the
expansion of a token.

\if_catcode:w tests if (token;) and (tokens) have the same category code whereas
\if:w and \if _charcode:w test if they have the same character code.

TEXhackers note: \if:w and \if_charcode:w are both the TEX primitive \if. \if_-
catcode:w is the TEX primitive \ifcat.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into the primitive \relax token. This can be useful when dealing
with control sequences which cannot be entered as a single token.

TEXhackers note: These are the TEX primitives \ifdefined and \ifcsname.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code).
Similar for the other functions.

TEXhackers note: These are the TEX primitives \ifhmode, \ifvmode, \ifmmode,
and \ifinner.

30

\mode_leave_vertical:

\debug_on:n
\debug_off:n

Updated: 2023-05-23

\debug_suspend:
\debug_resume:

4.7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the KTEX 2¢
\leavevmode approach, no box is used by the method implemented here.

4.8 Debugging support

\debug_on:n {(comma-separated list)}
\debug_off:n {(comma-separated list)}

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the (1ist) are

e check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

e check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

e deprecation that makes deprecated commands produce errors;
e log-functions that logs function definitions and variable declarations;
e all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing.

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors. These pairs of commands can be nested. This can be used around pieces of code
that are known to fail checks, if such failures should be ignored. See for instance I3cctab
and I3coffins.

31

Chapter 5

The 13expan module
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the IATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

5.1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
. ... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_tl1l }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }

results in the definition of \seq_gpush:No

32

\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

5.2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

e Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, £ expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

33

\cs_generate_variant:Nn
\cs_generate_variant :cn

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control
sequence) for IWTEX3 code-level macros. The (parent control sequence) is first
separated into the (base name) and (original argument specifier). The comma-
separated list of (variant argument specifiers) is then used to define variants of the
(original argument specifier) if these are not already defined; entries which corre-
spond to existing functions are silently ignored. For each (variant) given, a function is
created that expands its arguments as detailed and passes them to the (parent control
sequence). So for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function should only be applied if the (parent control sequence) is al-
ready defined. (This is only enforced if debugging support check-declarations is en-
abled.) If the (parent control sequence) is protected or if the (variant) involves any
x argument, then the (variant control sequence) is also protected. The (variant)
is created globally, as is any \exp_args:N(variant) function needed to carry out the
expansion. There is no need to re-apply \cs_generate_variant:Nn after changing the
definition of the parent function: the variant will always use the current definition of
the parent. Providing variants repeatedly is safe as \cs_generate_variant:Nn will only
create new definitions if there is not already one available.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, e, or x variant of an n parent;
e N,n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases
where both an n-type parent and an N-type parent exist, such as for \tl_count:n and
\tl_count:N.

When creating variants for conditional functions, \prg_generate_conditional_-
variant:Nnn provides a convenient way of handling the related function set.

For backward compatibility it is currently possible to make n, o, V, v, £, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

34

\exp_args_generate:n \exp_args_generate:n {(variant argument specifiers)}

Defines \exp_args:N(variant) functions for each (variant) given in the comma list
{{variant argument specifiers)}. Each (variant) should consist of the letters N, ¢, n,
V, v, o, £, e, x, p and the resulting function is protected if the letter x appears in
the (variant). This is only useful for cases where \cs_generate_variant:Nn is not
applicable.

5.3 Introducing the variants

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It relies on the primitive \expanded hence is fast.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside e or x expansion.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }
while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

35

at the cost of being protected for x-type. If you use f type expansion in conditional
processing then you should stick to using TF type functions only as the expansion does
not finish any \if... \fi: itself!

It is important to note that both £- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }
and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

o Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

o In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is).

e Finally £ expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants
are used numerous times in a document) the following considerations apply because the
speed of internal functions that expand the arguments of a base function depend on what
needs doing with each argument and where this happens in the list of arguments:

o for fastest processing any c-type arguments should come first followed by all other
modified arguments;

o unchanged N-type args that appear before modified ones have a small performance
hit;

o unchanged n-type args that appear before modified ones have a relative larger
performance hit.

5.4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

36

\exp_args:Nc *
\exp_args:cc *

\exp_args:No *

\exp_args:NV x

\exp_args:Nv *

\exp_args:Ne *

\exp_args:Nf =

\exp_args:Nx

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described
for the (tokens).

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one
argument: all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input
stream after reinsertion of the (function). Thus the (function) may take more than
one argument: all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. This control sequence should be the name of a (variable). The content of the
(variable) are recovered and placed inside braces into the input stream after reinsertion
of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

\exp_args:Ne (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and
exhaustively expands the (tokens). The result is inserted in braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one
argument: all others are left unchanged.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and
exhaustively expands the (tokens). The result is inserted in braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one
argument: all others are left unchanged.

37

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNc
NNo
NNV
NNv
NNe
NNf
Ncc
Nco
NcV
Ncv
Ncf
NVV

b S P S S SR S D D . P o

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

Nnc
Nno
Nnf
NnV
Nnv
Nne
Nce
Noc
Noo
Nof
Nfo
Nff
NVo
Nee

o D . D . S R . . R S S o

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNNv
NNNe
Nccce
NcNc
NcNo
Ncco

Ll . D S S

5.5 Manipulating two arguments

\exp_args:NNc (tokeni) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokenssz)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on the
input stream, followed by the expansion of the second and third arguments.

\exp_args:NNx (token;) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

5.6 Manipulating three arguments

\exp_args:NNNo (tokeni) (tokens) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

38

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNno
NNnV

*
*

NNnv *

NNne
NNcc
NNcf
NNoo
NNVV
NNVv
NNVe
NNvV
NNvv
NNve
NNeV
NNev
NNee
NnNV
Nnnc
Nnno
Nnnf
NnnV
Nnnv
Nnne
Nnff
Nnee
Ncnc
Ncno
NcnV
Ncnv
Ncne
Ncoo
NcVV
NcVv
NcVe
NcvV
Ncvv
Ncve
NceV
Ncev
Ncee
Nooo
Noof
Nffo
NVNV
Neee

b D . . P SR T . R S . S S S s . P P . D e, D P . D S D P . R . . D . D P S o

\exp_args:NNno (tokeni) (tokenz) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

39

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNx \exp_args:NNnx (token;) (tokens) {(tokensi)} {(tokens2)}
NNnx
NN
Nccx
Ncnx
Nnnx

These functions absorb four arguments and expand the second, third and fourth as de-

% tailed by their argument specifier. The first argument of the function is then the next

item on the input stream, followed by the expansion of the second argument, etc.

Nnox
Noox

5.7 Unbraced expansion

\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:

No
NV
Nv
Ne
Nf
NNo
NNV
NNf
Nco
NcV
Nno

* \exp_last_unbraced:Nno (token) {(tokensi)} {(tokenss)}

: These functions absorb the number of arguments given by their specification, carry out
N the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants

*
+ heed slower processing.

*

. TEXhackers note: As an optimization, the last argument is unbraced by some of those
. functions before expansion. This can cause problems if the argument is empty: for instance,

« \exp_last_unbraced:Nf \foo_bar:w { } \gq_stop leads to an infinite loop, as the quark is f-
% expanded.

Nnf *
Noo *
Nfo *
NNNo
NNNV %
NNNf %
NnNo «
NNNNo =%
NNNNf *

\exp_last_unbraced:Nx \exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokensz)}

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

40

\exp_after:wN x

\exp_not:N *

\exp_not:c *

\exp_not:n *

\exp_not:o *

\exp_after:wN (tokem) (tokens)

Carries out a single expansion of (tokens) (which may consume arguments) prior to the
expansion of (token;). If (tokeny) has no expansion (for example, if it is a character)
then it is left unchanged. It is important to notice that (token;) may be any single
token, including group-opening and -closing tokens ({ or } assuming normal TEX cat-
egory codes). Unless specifically required this should be avoided: expansion should be
carried out using an appropriate argument specifier variant or the appropriate \exp_-
args:N(variant) function.

TEXhackers note: This is the TEX primitive \expandafter.

5.8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)

Prevents expansion of the (token) in a context where it would otherwise be expanded, for
example an e-type or x-type argument or the first token in an o-type or f-type argument.

TEXhackers note: This is the TEX primitive \noexpand. It only prevents expansion. At
the beginning of an f-type argument, a space (token) is removed even if it appears as \exp_not:N
\c_space_token. In an e-expanding definition (\cs_new:Npe), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an e-type or x-type argument. In all other cases
the (tokens) continue to be expanded, for example in the input stream or in other types
of arguments such as c, £, v. The argument of \exp_not:n must be surrounded by
braces.

TEXhackers note: This is the e-TEX primitive \unexpanded. In an e-expanding definition
(\cs_new:Npe), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1, and \exp_not:n {#} is equivalent to #, namely it inserts the character #.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in e-type or x-type
arguments using \exp_not:n.

41

\exp_not:V

\exp_not:v

\exp_not:e

\exp_not:f

\exp_stop_£:

*

*

*

*

*

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in
e-type or x-type arguments using \exp_not:n.

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a con-
trol sequence which should be a (variable) name. The content of the (variable)
is recovered, and further expansion in e-type or x-type arguments is prevented using
\exp_not:n.

\exp_not:e {(tokens)}

Expands (tokens) exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e-type or x-type arguments
using \exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space
it is removed). Expansion then stops, and the result of the expansion (including any
tokens which were not expanded) is protected from further expansion in e-type or x-type
arguments using \exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an e-type or x-type expansion, it retains its form, but when
typeset it produces the underlying space (1).

5.9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens
are encountered in that place!

42

\exp:w *
\exp_end: «*

\exp:w *
\exp_end_continue_f:w *

\exp:w (expandable tokens) \exp_end:

Expands (expandable-tokens) until reaching \exp_end: at which point expansion
stops. The full expansion of (expandable tokens) has to be empty. If any token in
(expandable tokens) or any token generated by expanding the tokens therein is not
expandable the expansion will end prematurely and as a result \exp_end: will be misin-
terpreted later on.?

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
(expandable-tokens) rather than being on the same expansion level than \exp:w, e.g.,

you may see code such as
\exp:w \@Q_case:NnTF #1 {#2} { } { }
where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the (expandable tokens), but this should
not be relied upon.

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (expandable-tokens) until reaching \exp_end_continue_f:w at which point
expansion continues as an f-type expansion expanding (further-tokens) until an un-
expandable token is encountered (or the f-type expansion is explicitly terminated by
\exp_stop_£f:). As with all f-type expansions a space ending the expansion gets re-
moved.

The full expansion of (expandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not
expandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.*

In typical use cases (expandable-tokens) contains no tokens at all, e.g., you will
see code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

3Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!

43

\exp:w

*

\exp_end_continue_f:nw *

P

P AP A AP AP A A Al
. <.:<: M Hh O O 0T =B

::0_unbraced
::e_unbraced
::f_unbraced
::X_unbraced
::v_unbraced
::V_unbraced

\exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

The difference to \exp_end_continue_f:w is that we first we pick up an argument which
is then returned to the input stream. If (further-tokens) starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

5.10 Internal functions

\cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
IXTEX3 approach as this makes them more readily visible in the log and so forth. They
should not be used outside this module.

\cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general I2TEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

4In this particular case you may get a character into the output as well as an error message.

44

Chapter 6

The 13sort module
Sorting functions

6.1 Controlling sorting

ETEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \1_foo_clist { 3, 01 , -2 , 5, +1 }
\clist_sort:Nn \1_foo_clist
{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }

}

results in \1_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in non-
decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a (comparison code) consisting only of \sort_return_same: with no
test yields a trivial sort: the final order is identical to the original order. Conversely,
using a (comparison code) consisting only of \sort_return_swapped: reverses the list
(in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTEX), depending on what other packages are loaded.

Internally, the code from I3sort stores items in \toks registers allocated locally. Thus,
the (comparison code) should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

45

\sort_return_same: \seq_sort:Nn (seq Var)

\sort_return_swapped: { ... \sort_return_same: or \sort_return_swapped: ... }
Indicates whether to keep the order or swap the order of two items that are compared
in the sorting code. Only one of the \sort_return_. .. functions should be used by the
code, according to the results of some tests on the items #1 and #2 to be compared.

46

Chapter 7

The 13tl-analysis module
Analyzing token lists

This module provides functions that are particularly useful in the I3regex module for
mapping through a token list one (token) at a time (including begin-group/end-group
tokens). For \tl_analysis_map_inline:Nn or \tl_analysis_map_inline:nn, the to-
ken list is given as an argument; the analogous function \peek_analysis_map_inline:n
documented in I3token finds tokens in the input stream instead. In both cases the user
provides (inline code) that receives three arguments for each (token):

o (tokens), which both o-expand and e/x-expand to the (token). The detailed form
of (tokens) may change in later releases.

o (char code), a decimal representation of the character code of the (token), —1 if
it is a control sequence.

o (catcode), a capital hexadecimal digit which denotes the category code of the
(token) (0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: align-
ment tab, 6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other,
D: active). This can be converted to an integer by writing "(catcode).

In addition, there is a debugging function \tl_analysis_show:n, very similar to the
\ShowTokens macro from the ted package.

\tl_analysis_show:N \tl_analysis_show:n {(token list)}
\tl_analysis_show:n \tl_analysis_log:n {(token list)}
\tl_analysis_log:N

, Displays to the terminal (or log) the detailed decomposition of the (token list) into to-
\tl_analysis_log:n

kens, showing the category code of each character token, the meaning of control sequences
New: 2021-05-11 and active characters, and the value of registers.

\tl_analysis_map_inline:nn \tl_analysis_map_inline:nn {(token list)} {(inline function)}
\tl_analysis_map_inline:Nn

Applies the (inline function) to each individual (token) in the (token list). The
Updated: 2022-03-26 (inline function) receives three arguments as explained above. As all other mappings
the mapping is done at the current group level, i.e., any local assignments made by the
(inline function) remain in effect after the loop.

47

Chapter 8

The 13regex module
Regular expressions in TEpX

The |3regex module provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the PCRE syntax (and very close to POSIX), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \1_my_tl

the token list variable \1_my_t1 holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to emphasize
each word and add a comma after it:

\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \1_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \O denotes the full match (here, a word).
The command \emph is inserted using \c{emph}, and its argument \0 is put between
braces \cB\{ and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_set:Nn. For example,

\regex_new:N \1_foo_regex
\regex_set:Nn \1_foo_regex { \c{begin} \cB. (\c["BE].*) \cE. }

stores in \1_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c["BE] .*), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c["BE].*, giving us access to the name of the environment when doing
replacements.

48

8.1 Syntax of regular expressions

8.1.1 Regular expression examples

We start with a few examples, and encourage the reader to apply \regex_show:n to
these regular expressions.

Cat matches the word “Cat” capitalized in this way, but also matches the beginning
of the word “Cattle”: use \bCat\b to match a complete word only.

[abc] matches one letter among “a”, “b”, “c”; the pattern (alblc) matches the
same three possible letters (but see the discussion of submatches below).

[A-Za-z]* matches any number (due to the quantifier *) of Latin letters (not
accented).

\c{[A-Za-z] *} matches a control sequence made of Latin letters.

_["_1#_ matches an underscore, any number of characters other than under-
score, and another underscore; it is equivalent to _.*?_ where . matches arbitrary
characters and the lazy quantifier #? means to match as few characters as possible,
thus avoiding matching underscores.

[\+\-]1?\d+ matches an explicit integer with at most one sign.

I\N+H\-\uI*\d+* matches an explicit integer with any number of + and — signs,
with spaces allowed except within the mantissa, and surrounded by spaces.

I\NH\-\UT* (\d@+1\d*\ .\d+) _* matches an explicit integer or decimal number; us-
ing [.,] instead of \. would allow the comma as a decimal marker.

O\H\-\T* (\d+ 1 \d*x\ . \d+) _*x ((?i1)pt |in| [cemIm|ex| [bslpl [dnld| [pcnlc) \ *
matches an explicit dimension with any unit that TEX knows, where (7i) means
to treat lowercase and uppercase letters identically.

\+\-_J*((?1)nan|inf | (\d+|\d*\.\d+) (\u*ke [\+\-_I*\d+) ?) * matches an
explicit floating point number or the special values nan and inf (with signs and
spaces allowed).

\+\-\1* (\d+|\cC.) * matches an explicit integer or control sequence (without
checking whether it is an integer variable).

\G.*7\K at the beginning of a regular expression matches and discards (due to \K)
everything between the end of the previous match (\G) and what is matched by
the rest of the regular expression; this is useful in \regex_replace_all:nnN when
the goal is to extract matches or submatches in a finer way than with \regex_-
extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions,
NN\ O\ * CON\=%/] [\+\=-\ (1 *\d+\) *) * matches among other things all valid
integer expressions (made only with explicit integers). One should follow it with further
testing.

49

8.1.2 Characters in regular expressions

Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash—letter also have a special meaning (for
instance \d matches any digit). As a rule,

o every alphanumeric character (A-Z, a—z, 0-9) matches exactly itself, and should
not be escaped, because \A, \B, ... have special meanings;

o mnon-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(, \), \?, \.; \");

o spaces should always be escaped (even in character classes);

« any other character may be escaped or not, without any effect: both versions match
exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\’ matches
the characters \abc¥% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{(regex)} syntax (see below).

Any special character which appears at a place where its special behavior cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh. ..} Character with hex code hh. ..
\xhh Character with hex code hh.
\a Alarm (hex 07).
\e Escape (hex 1B).
\f Form-feed (hex 0C).
\n New line (hex 0A).
\r Carriage return (hex 0D).
\t Horizontal tab (hex 09).

8.1.3 Characters classes

Character properties.
. A single period matches any token.
\d Any decimal digit.
\h Any horizontal space character, equivalent to [\ \~"I]: space and tab.

\s Any space character, equivalent to [\ \""I\""J\""L\""M].

50

\v Any vertical space character, equivalent to [\"~J\""K\""L\""M]. Note that \""K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alphanumerics and underscore, equivalent to the explicit
class [A-Za-z0-9_].

\D Any token not matched by \d.
\H Any token not matched by \h.
\N Any token other than the \n character (hex 0A).
\S Any token not matched by \s.
\V Any token not matched by \v.
\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.
[...] Negative character class. Matches any token other than the specified characters.
[x-y] Within a character class, this denotes a range (can be used with escaped characters).

[:(name):] Within a character class (one more set of brackets), this denotes the POSIX character
class (name), which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:"(name):] Negative POSIX character class.

For instance, [a-ogq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).

In character classes, only [, =, =, 1, \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ~, then the meaning of the character class is inverted; ~ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ~) is 1 then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and ["6-9] are equivalent.

8.1.4 Structure: alternatives, groups, repetitions
Quantifiers (repetition).
? 0 or 1, greedy.
7?7 0 or 1, lazy.
* 0 or more, greedy.
*7 0 or more, lazy.

+ 1 or more, greedy.

o1

+7 1 or more, lazy.
{n} Exactly n.
{n,} n or more, greedy.
{n,}? n or more, lazy.
{n,m} At least n, no more than m, greedy.
{n,m}? At least n, no more than m, lazy.

For greedy quantifiers the regex code will first investigate matches that involve as many
repetitions as possible, while for lazy quantifiers it investigates matches with as few
repetitions as possible first.

Alternation and capturing groups.

A|BIC Either one of A, B, or C, investigating A first.
(...) Capturing group.
(7:...) Non-capturing group.

(?1...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group is numbered with the first unused group number.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labeled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once :nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { al23aaxyz } \1_foo_seq

results in \1_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \1_foo_seq

results in \1_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

8.1.5 Matching exact tokens

The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

e C for control sequences;
o B for begin-group tokens;

e E for end-group tokens;

52

e M for math shift;
o T for alignment tab tokens;
o P for macro parameter tokens;
o U for superscript tokens (up);
o D for subscript tokens (down);
« S for spaces;
e L for letters;
e 0 for others; and
o A for active characters.
The \c escape sequence is used as follows.

\c{(regex)} A control sequence whose csname matches the (regex), anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, escape character sequence such
as \x{0A}, character class, or group, and forces this object to only match tokens
with category X (any of CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches upper-
case letters and digits of category code letter, \cC. matches any control sequence,
and \c0(abc) matches abc where each character has category other.’

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LS0] (..) matches two
tokens of category letter, space, or other.

\c["XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c [*0]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO] [A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches abxcd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{(var name)} matches the exact contents (both character codes and cate-
gory codes) of the variable \(var name), which are obtained by applying \exp_not:v
{(var name)} at the time the regular expression is compiled. Within a \c{. ..} control
sequence matching, the \u escape sequence only expands its argument once, in effect
performing \tl_to_str:v. Quantifiers are supported.

The \ur escape sequence allows to insert the contents of a regex variable into a
larger regular expression. For instance, A\ur{1_tmpa_regex}D matches the tokens A and

5This last example also captures “abc” as a regex group; to avoid this use a non-capturing group
\c0(?7:abc).

53

D separated by something that matches the regular expression \1_tmpa_regex. This
behaves as if a non-capturing group were surrounding \1_tmpa_regex, and any group
contained in \1_tmpa_regex is converted to a non-capturing group. Quantifiers are
supported.

For instance, if \1_tmpa_regex has value B|C, then A\ur{1_tmpa_regex}D is equiv-
alent to A(?7:B|C)D (matching ABD or ACD) and not to AB|CD (matching AB or CD). To
get the latter effect, it is simplest to use TEX’s expansion machinery directly: if \1_-
mymodule_BC_t1 contains B|C then the following two lines show the same result:

\regex_show:n { A \u{l_mymodule_BC_t1} D }
\regex_show:n{ AB | CD }

8.1.6 Miscellaneous

Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

“or \A Start of the subject token list.

$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ~ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \1_tmpa_int
yields 2, but replacing \G by ~ would result in \1_tmpa_int holding the value 1.

The option (?i) makes the match case insensitive (treating A-Z and a—z as equiv-
alent, with no support yet for Unicode case changing). This applies until the end of
the group in which it appears, and can be reverted using (?7-i). For instance, in
(71) (a(?-1)blc)d, the letters a and d are affected by the i option. Characters within
ranges and classes are affected individually: (?i) [\?7-B] is equivalent to [\7@ABab]
(and differs from the much larger class [\?-b]), and (?i) [Taeiou] matches any char-
acter which is not a vowel. The i option has no effect on \c{...}, on \u{...},
on character properties, or on character classes, for instance it has no effect at all in
(?7i)\u{l_foo_t1}\d\d[[:lower:]].

8.2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions, described further
below:

e \0 is the whole match;

e \1is the submatch that was matched by the first (capturing) group (.. .); similarly
for \2, ..., \9 and \g{(number)};

o _ inserts a space (spaces are ignored when not escaped);

54

e \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

o \c{(cs name)} inserts a control sequence;
o \c(category)(character) (see below);
o \u{(tl var name)?} inserts the contents of the (t1 var) (see below).

Characters other than backslash and space are simply inserted in the result (but since
the replacement text is first converted to a string, one should also escape characters that
are special for TEX, for instance use \#). Non-alphanumeric characters can always be
safely escaped with a backslash.

For instance,

\tl_set:Nn \1_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?1llo) . } { (\0--\1) } \1_my_tl

results in \1_my_t1 holding H(ell--el) (0,--0) w(or--o) (1d--1)!

The submatches are numbered according to the order in which the opening paren-
thesis of capturing groups appear in the regular expression to match. The n-th submatch
is empty if there are fewer than n capturing groups or for capturing groups that appear in
alternatives that were not used for the match. In case a capturing group matches several
times during a match (due to quantifiers) only the last match is used in the replacement
text. Submatches always keep the same category codes as in the original token list.

By default, the category code of characters inserted by the replacement are deter-
mined by the prevailing category code régime at the time where the replacement is made,
with two exceptions:

« space characters (with character code 32) inserted with \, or \x20 or \x{20} have
category code 10 regardless of the prevailing category code régime;

o if the category code would be 0 (escape), 5 (newline), 9 (ignore), 14 (comment) or
15 (invalid), it is replaced by 12 (other) instead.

The escape sequence \c allows to insert characters with arbitrary category codes, as well
as control sequences.

\cX(...) Produces the characters “...” with category X, which must be one of CBEMTPUDSLOA
as in regular expressions. Parentheses are optional for a single character (which
can be an escape sequence). When nested, the innermost category code applies, for
instance \cL(Hello\cS\ world)! gives this text with standard category codes.

\c{(text)} Produces the control sequence with csname (text). The (text) may contain ref-
erences to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{{var name)} allows to insert the contents of the variable with
name (var name) directly into the replacement, giving an easier control of category codes.
When nested in \c{...} and \u{...} constructions, the \u and \c escape sequences
perform \tl_to_str:v, namely extract the value of the control sequence and turn it into
a string. Matches can also be used within the arguments of \c and \u. For instance,

\tl_set:Nn \1_my_one_tl { first }

\tl_set:Nn \1_my_two_tl { \emph{second} }

\tl_set:Nn \1_my_tl { one , two , one , one }
\regex_replace_all:nnN { [~,]1+ } { \u{l_my_\O_t1} } \1_my_tl

55

\regex_new:N

\regex_set:Nn
\regex_gset:Nn

\regex_const:Nn

\regex_show:N
\regex_show:n
\regex_log:N
\regex_log:n

New: 2021-04-26
Updated: 2021-04-29

results in \1_my_t1 holding first, \emph{second},first,first.
Regex replacement is also a convenient way to produce token lists with arbitrary
category codes. For instance

\tl_clear:N \1_tmpa_tl
\regex_replace_all:nnN { } { \cU\% \cA\~ } \1_tmpa_tl

results in \1_tmpa_t1 containing the percent character with category code 7 (superscript)
and an active tilde character.

8.3 Pre-compiling regular expressions

If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the [3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N (regex var)

Creates a new (regex var) or raises an error if the name is already taken. The declara-
tion is global. The (regex var) is initially such that it never matches.

\regex_set:Nn (regex var) {(regex)}
Stores a compiled version of the (regex) in the (regex var). The assignment is local

for \regex_set:Nn and global for \regex_gset:Nn. For instance, this function can be
used as

\regex_new:N \1_my_regex
\regex_set:Nn \1_my_regex { my\ (simple\)7 reg(ex|ular\ expression) }

\regex_const:Nn (regex var) {(regex)}

Creates a new constant (regex var) or raises an error if the name is already taken. The
value of the (regex var) is set globally to the compiled version of the (regex).

\regex_show:n {(regex)}

\regex_log:n {(regex)}

Displays in the terminal or writes in the log file (respectively) how I3regex interprets the
(regex). For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88 (X)
+-branch
char code 89 (Y)

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

56

\regex_if_match:nnTF
\regex_if match:nVIF
\regex_if_match:NnTF
\regex_if_match:NVITF

New: 2025-05-14

\regex_count :nnN
\regex_count :nVN
\regex_count :NnN
\regex_count :NVN

\regex_match_case:nn
\regex_match_case:nnTF

New: 2022-01-10

8.4 Matching

All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_set:Nn.

\regex_if_match:nnTF {(regex)} {(token 1ist)} {(true code)} {(false code)}

Tests whether the (regex) matches any part of the (token list). For instance,

\regex_if_match:nnTF { b [cdel* } { abecdcx } { TRUE } { FALSE }
\regex_if_match:nnTF { [b-dgq-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

\regex_count:nnN {(regex)} {(token list)} (integer)

Sets (integer) within the current TEX group level equal to the number of times (regex)
appears in (token list). The search starts by finding the left-most longest match,
respecting greedy and lazy (non-greedy) operators. Then the search starts again from
the character following the last character of the previous match, until reaching the end of
the token list. Infinite loops are prevented in the case where the regular expression can
match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \1_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \1_foo_int

results in \1_foo_int taking the value 5.

\regex_match_case:nnTF
{

{(regex1)

{(regex2)

} {(code case1)}

} {(code cases)?}
{(regexn)} {{code casen)}

} {(token list)}

{(true code)} {(false code)}

Determines which of the (regular expressions) matches at the earliest point in the
(token 1list), and leaves the corresponding (code) followed by the (true code) in the
input stream. If several (regex) match starting at the same point, then the first one
in the list is selected and the others are discarded. If none of the (regex) match, the
(false code) is left in the input stream. Each (regex) can either be given as a regex
variable or as an explicit regular expression.

In detail, for each starting position in the (token 1ist), each of the (regex) is
searched in turn. If one of them matches then the corresponding (code) is used and
everything else is discarded, while if none of the (regex) match at a given position
then the next starting position is attempted. If none of the (regex) match anywhere
in the (token list) then nothing is left in the input stream. Note that this differs
from nested \regex_if_match:nnTF statements since all (regex) are attempted at each
position rather than attempting to match (regex;) at every position before moving on
to (regexs).

57

\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:

nnN
nVN
nnNTF
nVNTF
NnN
NVN
NnNTF
NVNTF

\regex_extract_all:
\regex_extract_all:
\regex_extract_all:
\regex_extract_all:
\regex_extract_all:
\regex_extract_all:
\regex_extract_all:
\regex_extract_all:

nnN
nVN
nnNTF
nVNTF
NnN
NVN
NnNTF
NVNTF

8.5 Submatch extraction

\regex_extract_once:nnN {(regex)} {(token list)} (seq var)
\regex_extract_once:nnNTF {(regex)} {(token 1list)} (seq var) {(true code)} {(false
code)}

Finds the first match of the (regex) in the (token list). If it exists, the match is
stored as the first item of the (seq var), and further items are the contents of capturing
groups, in the order of their opening parenthesis. The (seq var) is assigned locally. If
there is no match, the (seq var) is cleared. The testing versions insert the (true code)
into the input stream if a match was found, and the (false code) otherwise.

For instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \1_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z) must
match the whole token list. The first capturing group, (La)?, matches La, and the second
capturing group, (!*), matches !!!. Thus, \1_foo_seq contains as a result the items
{LaTeX!!!}, {La}, and {!!!}, and the true branch is left in the input stream. Note
that the n-th item of \1_foo_seq, as obtained using \seq_item:Nn, correspond to the
submatch numbered (n — 1) in functions such as \regex_replace_once:nnN.

\regex_extract_all:nnN {(regex)} {(token list)} (seq var)
\regex_extract_all:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false
code)}

Finds all matches of the (regex) in the (token list), and stores all the submatch
information in a single sequence (concatenating the results of multiple \regex_extract_-
once:nnN calls). The (seq var) is assigned locally. If there is no match, the (seq var)
is cleared. The testing versions insert the (true code) into the input stream if a match
was found, and the (false code) otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \1_foo_seq
{ true } { false }

Then the regular expression matches twice, the resulting sequence contains the two items
{Hello} and {world}, and the true branch is left in the input stream.

58

\regex_split:
:nVN

\regex_split

\regex_split:
:nVNTF

\regex_split

\regex_split:
:NVN

\regex_split

\regex_split:
:NVNTF

\regex_split

nnN \regex_split:nnN {(regex)} {(token list)} (seq var)
\regex_split:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false code)}

nolNTE ghlits the (token list) into a sequence of parts, delimited by matches of the (regex).

If the (regex) has capturing groups, then the token lists that they match are stored as
items of the sequence as well. The assignment to (seq var) is local. If no match is
found the resulting (seq var) has the (token list) as its sole item. If the (regex)
matches the empty token list, then the (token list) is split into single tokens. The

NnN

NoNTF

testing versions insert the (true code) into the input stream if a match was found, and
the (false code) otherwise. For example, after

\seq_new:N \1_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \1_path_seq
{ true } { false }

the sequence \1_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}, and the true branch is left in the input stream.

8.6 Replacement

\regex_replace_once:
\regex_replace_once:
\regex_replace_once:
\regex_replace_once:
\regex_replace_once:
\regex_replace_once:
\regex_replace_once:
\regex_replace_once:

nnN
nVN
nnNTF
nVNTF
NnN
NVN
NnNTF
NVNTF

\regex_replace_once:nnN {(regex)} {(replacement)} (tl var)
\regex_replace_once:nnNTF {(regex)} {(replacement)} (tl1 var) {(true code)} {(false
code)?}

Searches for the (regex) in the contents of the (t1 var) and replaces the first match with
the (replacement). In the (replacement), \O represents the full match, \1 represents
the contents of the first capturing group, \2 of the second, etc. The result is assigned
locally to (t1 var).

\regex_replace_all:
\regex_replace_all:
\regex_replace_all:
\regex_replace_all:
\regex_replace_all:
\regex_replace_all:
\regex_replace_all:
\regex_replace_all:

nnN
nVN
nnNTF
nVNTF
NnN
NVN
NnNTF
NVNTF

\regex_replace_all:nnN {(regex)} {(replacement)} (tl var)
\regex_replace_all:nnNTF {(regex)} {(replacement)} (t1 var) {(true code)} {(false
code)}

Replaces all occurrences of the (regex) in the contents of the (tl var) by the
(replacement), where \0O represents the full match, \1 represents the contents of the
first capturing group, \2 of the second, etc. Every match is treated independently, and
matches cannot overlap. The result is assigned locally to (t1 var).

59

\regex_replace_case_once:nN

\regex_replace_case_once:nNTF

\regex_replace_case_once:nNTF {

New: 2022-01-10

{{regex1)} {(replacement:)}
{(regex2)} {(replacements)}

{&éegexn)} {{replacement,)}
} (t1 var)
{(true code)} {(false code)}

Replaces the earliest match of the regular expression (?|(regex;)l...|(regex,)) in the
(t1 var) by the (replacement) corresponding to which (regex;) matched, then leaves
the (true code) in the input stream. If none of the (regex) match, then the (t1 var)
is not modified, and the (false code) is left in the input stream. Each (regex) can
either be given as a regex variable or as an explicit regular expression.

In detail, for each starting position in the (token 1ist), each of the (regex) is
searched in turn. If one of them matches then it is replaced by the corresponding
(replacement) as described for \regex_replace_once:nnN. This is equivalent to check-
ing with \regex_match_case:nn which (regex) matches, then performing the replace-
ment with \regex_replace_once:nnN.

\regex_replace_case_all:nN

\regex_replace_case_all:nNTF

\regex_replace_case_all:nNTF {

New: 2022-01-10

{(regex1)} {(replacementi)}

o
{(regex2)} {(replacements)}

{(regex,)} {(replacement,)}
} (t1 var)
{(true code)} {(false code)}

Replaces all occurrences of all (regex) in the (token list) by the corresponding
(replacement). Every match is treated independently, and matches cannot overlap.
The result is assigned locally to (t1 var), and the (true code) or (false code) is left
in the input stream depending on whether any replacement was made or not.

In detail, for each starting position in the (token 1ist), each of the (regex) is
searched in turn. If one of them matches then it is replaced by the corresponding
(replacement), and the search resumes at the position that follows this match (and
replacement). For instance

\tl_set:Nn \1_tmpa_tl { Hello,~world! }
\regex_replace_case_all:nN

{
{ [A-Za-z]+ } { “\0’’ }
{\vo}{-——-—-1%
{ .3 { N0l }
} \1_tmpa_tl
results in \1_tmpa_t1 having the contents ¢ ‘Hello’’---[,]1[] ¢ ‘world’’---[!]. Note

in particular that the word-boundary assertion \b did not match at the start of words
because the case [A-Za-z]+ matched at these positions. To change this, one could simply
swap the order of the two cases in the argument of \regex_replace_case_all:nN.

60

8.7 Scratch regular expressions

\1_tmpa_regex Scratch regex for local assignment. These are never used by the kernel code, and so are
\1_tmpb_regex gafe for use with any IXTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_regex Scratch regex for global assignment. These are never used by the kernel code, and so
\g_tmpb_regex are safe for use with any IWTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

8.8 Bugs, misfeatures, future work, and other possi-
bilities
The following need to be done now.
e Rewrite the documentation in a more ordered way, perhaps add a BNF?
Additional error-checking to come.
e Clean up the use of messages.
e Cleaner error reporting in the replacement phase.
¢ Add tracing information.
e Detect attempts to use back-references and other non-implemented syntax.
o Test for the maximum register \c_max_register_int.

e Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

e The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.
Code improvements to come.

e Shift arrays so that the useful information starts at position 1.

e Only build \c{...} once.

e Use arrays for the left and right state stacks when compiling a regex.

e Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(T think not.)

e Quantifiers for \u and assertions.

e When matching, keep track of an explicit stack of curr_state and curr_-
submatches.

e If possible, when a state is reused by the same thread, kill other subthreads.

61

Use an array rather than \g__regex_balance_t1 to build the function __regex_-
replacement_balance_one_match:n.

Reduce the number of epsilon-transitions in alternatives.

Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?]

Optimize groups with no alternative.
Optimize states with a single __regex_action_free:n.

Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

Optimize the use of \int_step_. .. functions.
Groups don’t capture within regexes for csnames; optimize and document.
Better “show” for anchors, properties, and catcode tests.
Does \K really need a new state for itself?
When compiling, use a boolean in_cs and less magic numbers.
The following features are likely to be implemented at some point in the future.
General look-ahead/behind assertions.
Regex matching on external files.

Conditional subpatterns with look ahead/behind: “if what follows is [...], then

[..]>
(*..) and (7..) sequences to set some options.
UTF-8 mode for pdfTEX.

Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from ~, and \Z, \z and $ should differ.

Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

The following features of PCRE or Perl may or may not be implemented.

e Callout with (?C...) or other syntax: some internal code changes make that pos-
sible, and it can be useful for instance in the replacement code to stop a regex
replacement when some marker has been found; this raises the question of a po-
tential \regex_break: and then of playing well with \t1_map_break: called from
within the code in a regex. It also raises the question of nested calls to the regex
machinery, which is a problem since \fontdimen are global.

Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

62

e Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of PCRE or Perl will definitely not be implemented.

o Back-references: non-regular feature, this requires backtracking, which is pro-
hibitively slow.

e Recursion: this is a non-regular feature.

e Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catastrophic
backtracking, are unnecessary in a non-backtracking algorithm, and difficult to im-
plement.

e Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.

e Backtracking control verbs: intrinsically tied to backtracking.

e \ddd, matching the character with octal code ddd: we already have \x{...} and
the syntax is confusingly close to what we could have used for backreferences (\1,
\2, ...), making it harder to produce useful error message.

o \cx, similar to TEX’s own \"~"x.
o Comments: TEX already has its own system for comments.

e \Q...\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

e \C single byte in UTF-8 mode: XHTEX and LuaTgX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

63

Chapter 9

The 13prg module
Control structures

Conditional processing in ITEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are (true) and (false).

TEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used
in testing with \if_predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

64

9.1 Defining a set of conditional functions

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn

\prg_gset_conditional:Npnn

\prg_new_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)}
{(code)}

\prg_new_conditional:Nnn \(name):({arg spec) {(conditions)} {(code)}

\prg_new_protected_conditional:Npnn
\prg_set_protected_conditional:Npnn
\prg_gset_protected_conditional:Npnn

\prg_new_conditional:Nnn
\prg_set_conditional:Nnn
\prg_gset_conditional:Nnn

\prg_new_protected_conditional:Nnn
\prg_set_protected_conditional:Nnn
\prg_gset_protected_conditional:Nnn

Updated: 2022-11-01

These functions create a family of conditionals using the same (code) to perform the test
created. Those non-protected conditionals are expandable if (code) is. The new versions
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set versions do no check and perform assignments locally (c¢f. \cs_set:Npn). The
conditionals created are dependent on the comma-separated list of (conditions), which
should be one or more of T, F and TF, and for non-protected conditionals p. For public
conditionals, a full set of forms should be provided: this contrasts with strictly internal
conditionals, where only the required subset need be defined.
The conditionals are defined by \prg_new_conditional:Npnn and friends as:

o \(name)_p:(arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

o \(name):(arg spec)T — a function with one more argument than the original (arg
spec) demands. The (true branch) code in this additional argument will be left
on the input stream only if the test is true.

o \(name):(arg spec)F — a function with one more argument than the original (arg
spec) demands. The (false branch) code in this additional argument will be left
on the input stream only if the test is false.

e \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument
will be left on the input stream if the test is true, while the (false branch) code
in the second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to
\prg_set_conditional:Npnn: this should match the (argument specification) but
this is not enforced. The Nnn versions infer the number of arguments from the argument
specification given (c¢f. \cs_new:Nn, etc.). Within the (code), the functions \prg_-
return_true: and \prg_return_false: are used to indicate the logical outcomes of the
test.

An example can easily clarify matters here:

65

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if _meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if _meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}
This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the (conditions) list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.
The special case where the code of a conditional ends with \prg_return_true:
\else: \prg_return_false: \fi: is optimized.

\prg_new_eq_conditional:NNn \prg_new_eq_conditional:NNn \(name:):(arg spec) \(name;):(arg spec) {(conditions)}
\prg_set_eq_conditional:NNn
\prg_gset_eq_conditional:NNn

Updated: 2023-05-26

These functions copy a family of conditionals. The new version checks for existing defin-
itions (cf. \cs_new_eq:NN) whereas the set version does not (cf. \cs_set_eq:NN). The
conditionals copied are depended on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

\prg_return_true: * \prg_return_true:
\prg_return_false: x \prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions ezactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

\prg_generate_conditional_variant:Nnn \prg_generate_conditional_variant:Nnn \(name):(arg spec) {(variant
argument specifiers)} {(condition specifiers)}

Defines argument-specifier variants of conditionals. This is equivalent to running
\cs_generate_variant:Nn (conditional) {(variant argument specifiers)} on each
(conditional) described by the (condition specifiers). These base-form (conditionals)
are obtained from the (name) and (arg spec) as described for \prg_new_conditional:Npnn,
and they should be defined.

66

\bool_new:N
\bool _new:c

\bool_const:Nn
\bool_const:cn

\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

9.2 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which generally means being constructed from predicate
functions and booleans, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, ITEX 2¢ and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) is initially false.

\bool_const:Nn (boolean) {(boolexpr)}

Creates a new constant (boolean) or raises an error if the name is already taken. The
value of the (boolean) is set globally to the result of evaluating the (boolexpr).

\bool_set_false:N (boolean)

Sets (boolean) logically false.

\bool_set_true:N (boolean)

Sets (boolean) logically true.

\bool_set_eq:NN (boolean;) (booleany)

Sets (boolean;) to the current value of (booleans).

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if:nTF, and sets the
(boolean) variable to the logical truth of this evaluation.

67

\bool_set_inverse:N
\bool_set_inverse:c
\bool_gset_inverse:N
\bool_gset_inverse:c

\bool_if_p:N *
\bool_if _p:c *
\bool_if:NTF *
\bool_if:cTF *

\bool_to_str:N *
\bool_to_str:c x
\bool_to_str:n *

New: 2021-11-01
Updated: 2023-11-14

\bool_show:N
\bool_show:c

Updated: 2021-04-29

\bool_show:n

\bool_log:N
\bool_log:c

Updated: 2021-04-29

\bool_log:n

\bool_if_exist_p:N x
\bool_if_exist_p:c =*
\bool_if_exist:NTF x
\bool_if_exist:cTF *

\c_true_bool
\c_false_bool

\1_tmpa_bool
\1_tmpb_bool

\bool_set_inverse:N (boolean)

Toggles the (boolean) from true to false and conversely: sets it to the inverse of its
current value.

\bool_if_p:N (boolean)
\bool_if:NTF (boolean) {(true code)} {(false code)}

Tests the current truth of (boolean), and continues expansion based on this result.

\bool_to_str:N (boolean)
\bool_to_str:n {(boolean expression)}

Expands to the string true or false depending on the logical truth of the (boolean) or
(boolean expression).

\bool_show:N (boolean)

Displays the logical truth of the (boolean) on the terminal.

\bool_show:n {(boolean expression)}

Displays the logical truth of the (boolean expression) on the terminal.

\bool_log:N (boolean)
Writes the logical truth of the (boolean) in the log file.

\bool_log:n {(boolean expression)}

Writes the logical truth of the (boolean expression) in the log file.
\bool_if_exist_p:N (boolean)

\bool_if_exist:NTF (boolean) {(true code)} {(false code)}

Tests whether the (boolean) is currently defined. This does not check that the (boolean)
really is a boolean variable.

9.2.1 Constant and scratch booleans

Constants that represent true and false, respectively. Used to implement predicates.

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any I#TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

68

\g_tmpa_bool A scratch boolean for global assignment. It is never used by the kernel code, and so is
\g_tmpb_bool gafe for use with any IATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

9.3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true)
or (false) values, it seems only fitting that we also provide a parser for (boolean
expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (true) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than []). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 =1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.

Contrarily to some other programming languages, the operators && and | | evaluate
both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

TEXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in TEX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)
arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if #1 were a closing parenthesis and \1_tmpa_bool were true.

(\1_tmpa_bool || \token_if_eq_meaning_ p:NN X #1)

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_-
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn

{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 =3 } }
{ \int_compare_p:n { 4 <=4 } }
{ \int_compare_p:n { 1 = \error } } Y skipped
}
}
{ ! \int_compare_p:n { 2 =4 } }

69

\bool_if_p:n *
\bool_if:nTF *

\bool_lazy_all_p:n *
\bool_lazy_all:nTF *

\bool_lazy_and_p:nn *
\bool_lazy_and:nnTF *

\bool_lazy_any_p:n x
\bool_lazy_any:nTF x

\bool_lazy_or_p:nn %
\bool_lazy_or:nnTF x*

\bool_not_p:n *

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

\bool_if_p:n {(boolean expression)}
\bool_if:nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean
variables with the logical relationship between these defined using && (“And”), || (“Or”),
I (“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_lazy_all_p:n { {(boolexpri)
\bool_lazy_all:nTF { {(boolexpri)
{(false code)}

} {(boolexprs)} --- {(boolexpry)} }
} {(boolexprs)} --- {(boolexprn)} } {(true code)}

Implements the “And” operation on the (boolean expressions), hence is true if all of
them are true and false if any of them is false. Contrarily to the infix operator &&,
only the (boolean expressions) which are needed to determine the result of \bool_-
lazy_all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two

(boolean expressions).

\bool_lazy_and_p:nn {(boolexpr:i)} {(boolexprs)}

\bool_lazy_and:nnTF {(boolexpri)} {(boolexpr:)} {(true code)} {(false code)}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two (boolean expressions).

\bool_lazy_any_p:n { {(boolexpr;)
\bool_lazy_any:nTF { {(boolexpr:)
{(false code)?}

} {(boolexprs)} --- {(boolexpry)} }

} {(boolexprs)} --- {(boolexprn)} } {(true code)}
Implements the “Or” operation on the (boolean expressions), hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator ||,
only the (boolean expressions) which are needed to determine the result of \bool_-
lazy_any:nTF are evaluated. See also \bool_lazy_or:nnTF when there are only two

(boolean expressions).

\bool_lazy_or_p:nn {(boolexpr:)} {(boolexprs)}
\bool_lazy_or:nnTF {(boolexpr:i)} {(boolexprs)} {(true code)} {(false code)}

Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator | |, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two (boolean expressions).

\bool_not_p:n {(boolean expression)}

Function version of ! ((boolean expression)) within a boolean expression.

70

\bool_xor_p:nn * \bool_xor_p:nn {(boolexpri)} {(boolexprs)}
\bool_xor:nnTF x \bool_xor:nnTF {(boolexpri)} {(boolexpr:)} {(true code)} {(false code)}

\bool_do_until:
\bool_do_until:

Nn
cn

X

\bool_do_while:
\bool_do_while:

Nn
cn

\bool_until_do:
\bool _until_do:

Nn
cn

P

\bool_while_do:
\bool_while_do:

Nn
cn

R

\bool_do_until:

\bool_do_while:

\bool_until_do:

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operation.

9.4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is false then the (code) is inserted into the input stream
again and the process loops until the (boolean) is true.

\bool_do_while:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is true then the (code) is inserted into the input stream
again and the process loops until the (boolean) is false.

\bool_until_do:Nn (boolean) {{code)}

This function first checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the {code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is true.

\bool_while_do:Nn (boolean) {(code)}

This function first checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is false.

\bool_do_until:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical value
of the (boolean expression) as described for \bool_if:nTF. If it is false then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to true.

\bool_do_while:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is true then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to false.

\bool_until_do:nn {(boolean expression)} {(code)}

This function first checks the logical value of the (boolean expression) (as described
for \bool_if:nTF). If it is false the (code) is placed in the input stream and ex-
panded. After the completion of the (code) the truth of the (boolean expression) is
re-evaluated. The process then loops until the (boolean expression) is true.

71

\bool_while_do:nn 3

\bool_case:n *
\bool_case:nTF *

New: 2023-05-03

\prg_replicate:nn *

\mode_if_horizontal_p: *
\mode_if_horizontal:TF x

\bool_while_do:nn {(boolean expression)} {(code)}

This function first checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded. After
the completion of the (code) the truth of the (boolean expression) isre-evaluated. The
process then loops until the (boolean expression) is false.

\bool_case:nTF
{
{(boolexpr casei)
{(boolexpr cases)

(code case1)}
(code casez)}

AL
A

{éboolexpr casen)} {(code case,)}
}
{(true code)}
{(false code)}

Evaluates in turn each of the (boolean expression case)s until the first one that eval-
uates to true. The (code) associated to this first case is left in the input stream, followed
by the (true code), and other cases are discarded. If none of the cases match then only
the (false code) is inserted. The function \bool_case:n, which does nothing if there
is no match, is also available. For example

\bool_case:nF

{
{ \dim_compare_p:n { \1__mypkg_wd_dim <= 10pt } }
{ Fits }
{ \int_compare_p:n { \1__mypkg_total_int >= 10 } }
{ Many }
{ \1__mypkg_special_bool }
{ Special }
}
{ No idea! }

leaves “Fits” or “Many” or “Special” or “No idea!” in the input stream, in a way
b2

similar to some other language’s “if ... elseif ... elseif ... else...”.

9.5 Producing multiple copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe
for nesting. It yields its result after two expansion steps.

9.6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.

72

\mode_if_inner_p: *
\mode_if_inner:TF x

\mode_if_math_p: *
\mode_if_math:TF x

\mode_if_vertical_p: *
\mode_if_vertical:TF x

\if _predicate:w *

\if_bool:N *

\prg_break_point:Nn *

\prg_map_break:Nn *

\mode_if_inner_p:
\mode_if_inner:TF {(true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if_math_p:
\mode_if _math:TF {(true code)} {(false code)}

Detects if TEX is currently in maths mode.

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.
9.7 Primitive conditionals

\if_predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if_bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

9.8 Nestable recursions and mappings

There are a number of places where recursion or mapping constructs are used in expl3.
At a low-level, these typically require insertion of tokens at the end of the content to
allow “clean up”. To support such mappings in a nestable form, the following functions
are provided.

\prg_break_point:Nn \(type)_map_break: {({code)}

Used to mark the end of a recursion or mapping: the functions \(type)_map_break:
and \(type)_map_break:n use this to break out of the loop (see \prg_map_break:Nn
for how to set these up). After the loop ends, the (code) is inserted into the input
stream. This occurs even if the break functions are not applied: \prg_break_point:Nn
is functionally-equivalent in these cases to \use_ii:nn.

\prg_map_break:Nn \(type)_map_break: {(user code)}

\prg_break_point:Nn \(type)_map_break: {(ending code)}

Breaks a recursion in mapping contexts, inserting in the input stream the (user code)
after the (ending code) for the loop. The function breaks loops, inserting their (ending
code), until reaching a loop with the same (type) as its first argument. This \(type)_-
map_break: argument must be defined; it is simply used as a recognizable marker for the
(type).

For types with mappings defined in the kernel, \(type)_map_break: and \(type)_-
map_break:n are defined as \prg_map_break:Nn \(type)_map_break: {} and the same
with {} omitted.

73

\prg_break_point: *

\prg_break:

*

\prg_break:n *

\group_align_safe_begin: x*

\group_align_safe_end:

* .

9.8.1 Simple mappings

In addition to the more complex mappings above, non-nestable mappings are used in a
number of locations and support is provided for these.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion:
the function \prg_break:n uses this to break out of the loop.

\prg_break:n {(code)} ... \prg_break_point:

Breaks a recursion which has no (ending code) and which is not a user-breakable map-
ping (see for instance implementation of \int_step_function:nnnN), and inserts the
(code) in the input stream.

9.9 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw would result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

74

Chapter 10

The 13sys module
System /runtime functions

10.1 The name of the job

\c_sys_jobname_str Constant that gets the “job name” assigned when starts.
J g

TEXhackers note: This is the TEX primitive \jobname. For technical reasons, the string
here is not of the same internal form as other, but may be manipulated using normal string
functions.

10.2 Date and time

\c_sys_minute_int The date and time at which the current job was started: these are all reported as integers.
\c_sys_hour_int
\c_sys_day_int TEXhackers note: Whilst the underlying TEX primitives \time, \day, \month, and \year
\c_sys_month_int can be altered by the user, this interface to the time and date is intended to be the “real” values.
\c_sys_year_int

\c_sys_timestamp_str The timestamp for the current job: the format is as described for \file_timestamp:n.

New: 2023-08-27

0]

\sys_if_engine_luatex_p: *
\sys_if_engine_luatex:TF *
\sys_if_engine_pdftex_p: «*
\sys_if_engine_pdftex:TF
\sys_if_engine_ptex_p:
\sys_if_engine_ptex:TF
\sys_if_engine_uptex_p:
\sys_if_engine_uptex:TF
\sys_if_engine_xetex_p:
\sys_if_engine_xetex:TF

>*

L S S i

10.3 Engine

\sys_if_engine_pdftex_p:

\sys_if_engine_pdftex:TF {(true code)} {(false code)}

Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u)ptex tests are for e-pIEX and e-uplEX
as expl3 requires the e-TEX extensions. Each conditional is true for ezactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for e-pIEX but false for e-upIeX.

\sys_if_engine_opentype_p: * \sys_if_engine_opentype_p:
\sys_if_engine_opentype:TF * \sys_if_engine_opentype:TF {(true code)} {(false code)}

New: 2024-11-05

\c_sys_engine_str

\c_sys_engine_exec_str

New: 2020-08-20

\c_sys_engine_format_str

New: 2020-08-20

Conditional which allows functionality-specific code to be used. The test is true for
engines which can use OpenType fonts and thus full Unicode typesetting. This tests
for features not engine name, but currently is equivalent to requiring either XfqTEX or

LuaTgX.

TEXhackers note: The underlying test here checks for \Umathcode, which is used to
implement OpenType math font typesetting. Any engine which should give a true result here
needs to provide general Unicode support (accepting the full UTF-8 range for character codes),
a mechanism to load system fonts and a suitable interface for math mode typesetting.

The current engine given as a lower case string: one of luatex, pdftex, ptex, uptex or
xetex.

The name of the standard executable for the current TEX engine given as a lower case
string: one of luatex, luahbtex, pdftex, eptex, euptex or xetex.

The name of the preloaded format for the current TEX run given as a lower case string:
one of lualatex (or dvilualatex), pdflatex (or latex), platex, uplatex or xelatex
for ITEX, similar names for plain TEX (except pdfTEX in DVI mode yields etex), and
cont-en for ConTEXt (i.e., the \fmtname).

76

\c_sys_engine_version_str

\sys_timer:

New: 2021-05-12

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF
\sys_if_output_pdf_p:
\sys_if_output_pdf:TF

b R S S

\c_sys_output_str

The version string of the current engine, in the same form as given in the banner issued
when running a job. For pdfTEX and LuaTgX this is of the form

(major).(minor).(revision)
For XATEX, the form is
(major).({minor)

For pIEX and uplgX, only releases since TEX Live 2018 make the data available, and
the form is more complex, as it comprises the pIEX version, the uplEX version and the

e-pIEX version.
p{major).(minor).(revision)-u{major).(minor)-(epTeX)

where the u part is only present for uplEX.

\sys_timer:

Expands to the current value of the engine’s timer clock, a non-negative integer. This
function is only defined for engines with timer support. This command measures not
just CPU time but real time (including time waiting for user input). The unit are scaled
seconds (2716 seconds).

10.4 Output format

In IMTEX, the output format may be set in the preamble: as such, expl3 delays setting
the information here until either

e \sys_ensure_backend: or \sys_load_backend:n are used

e \begin{document} is reached

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF {(true code)} {(false code)}

Conditionals which give the current output mode the TEX run is operating in. This is
always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are
thus complementary and are both provided to allow the programmer to emphasize the
most appropriate case.

The current output mode given as a lower case string: one of dvi or pdf.

7

10.5 Platform

\sys_if_platform_unix_p:
\sys_if_platform_unix:TF
\sys_if_platform_windows_p:
\sys_if_platform_windows:TF

* \sys_if_platform_unix_p:

* \sys_if_platform_unix:TF {(true code)} {(false code)}
*

*

\c_sys_platform_str

\sys_rand_seed: *

\sys_gset_rand_seed:n

\sys_get_shell:nnN
\sys_get_shell :nnNTF

Conditionals which allow platform-specific code to be used. The names follow the Lua
os.type() function, i.e., all Unix-like systems are unix (including Linux and MacOS).

The current platform given as a lower case string: one of unix, windows or unknown.

10.6 Random numbers

\sys_rand_seed:

Expands to the current value of the engine’s random seed, a non-negative integer. In
engines without random number support this expands to 0.

\sys_gset_rand_seed:n {(int expr)}

Globally sets the seed for the engine’s pseudo-random number generator to the (integer
expression). This random seed affects all \..._rand functions (such as \int_rand:nn
or \clist_rand_item:n) as well as other packages relying on the engine’s random num-
ber generator. In engines without random number support this produces an error.

TgXhackers note: While a 32-bit (signed) integer can be given as a seed, only the absolute
value is used and any number beyond 2?2 is divided by an appropriate power of 2. We recommend
using an integer in [0,2%% — 1].

10.7 Access to the shell

\sys_get_shell:nnN {(shell command)} {(setup)} (t1 var)
\sys_get_shell:nnNTF {(shell command)} {(setup)} (t1 var) {(true code)} {(false
code)}

Defines (t1 var) to the text returned by the (shell command). The (shell command) is
converted to a string using \tl_to_str:n. Category codes may need to be set appropri-
ately via the (setup) argument, which is run just before running the (shell command)
(in a group). If shell escape is disabled, the (t1 var) will be set to \q_no_value in the
non-branching version. Note that quote characters (") cannot be used inside the (shell
command). The \sys_get_shell:nnNTF conditional inserts the (true code) if the shell
is available and no quote is detected, and the (false code) otherwise.

Note: Tt is not possible to tell from TEX if a command is allowed in restricted shell
escape. If restricted escape is enabled, the true branch is taken: if the command is
forbidden at this stage, a low-level TEX error will arise.

78

\c_sys_shell_escape_int

\sys_if_shell_p: =
\sys_if_shell:TF %

This variable exposes the internal triple of the shell escape status. The possible values
are

0 Shell escape is disabled
1 Unrestricted shell escape is enabled

2 Restricted shell escape is enabled

\sys_if_shell_p:
\sys_if_shell:TF {(true code)} {(false code)}

Performs a check for whether shell escape is enabled. This returns true if either of
restricted or unrestricted shell escape is enabled.

\sys_if_shell_unrestricted_p: x \sys_if_shell_unrestricted_p:
\sys_if_shell unrestricted:TF % \sys_if_shell_unrestricted:TF {({true code)} {(false code)}

Performs a check for whether unrestricted shell escape is enabled.

\sys_if_shell_restricted_p:

* \sys_if_shell_restricted_p:

\sys_if_shell_restricted:TF * \sys_if_shell_restricted:TF {(true code)} {(false code)}

\sys_shell_now:n
\sys_shell_now:e

\sys_shell_shipout:n
\sys_shell_shipout:e

Performs a check for whether restricted shell escape is enabled. This returns false if
unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset
of restricted shell escape in this case. To find whether any shell escape is enabled use
\sys_if_shell:TF.

\sys_shell_now:n {(tokens)}

Execute (tokens) through shell escape immediately.

\sys_shell_shipout:n {(tokens)}

Execute (tokens) through shell escape at shipout.

10.8 System queries

Some queries can be made about the file system, etc., without needing to use unrestricted
shell escape. This is carried out using the script 13sys-query, which is documented
separately. The wrappers here use this script, if available, to obtain system information
that is not directly available within the TEX run. Note that if restricted shell escape is
disabled, no results can be obtained.

79

\sys_get_query:nN
\sys_get_query:nnN
\sys_get_query:nnnN

New: 2024-03-08
Updated: 2024-04-08

\sys_split_query:nN
\sys_split_query:nnN
\sys_split_query:nnnN

New: 2024-03-08

\sys_load_backend:n

\sys_ensure_backend:

New: 2022-07-29

\sys_get_query:nN {(cmd)} (tl var)

\sys_get_query:nnN {(cmd)} {(spec)} (tl1 var)

\sys_get_query:nnnN {(cmd)} {(options)} {(spec)} (tl1 var)

Sets the (t1 var) to the information returned by the 13sys-query (cmd), potentially
supplying the (options) and (spec) to the query call. The valid (cmd) names are at
present

o pwd Returns the present working directory

o 1s Returns a directory listing, using the (spec) to select files and applying the
(options) if given

The (spec) is likely to contain the wildcards * or ?, and will automatically be passed to
the script without shell expansion. In a glob is needed within the (options), this will
need to be protected from shell expansion using ’ tokens.

The (spec) and (options), if given, are expanded fully before passing to the under-
lying script.

Spaces in the output are stored as active tokens, allowing them to be replaced by
for example a visible space easily. Other non-letter characters in the ASCII range are
set to category code 12. The category codes for characters out of the ASCII range are
left unchanged: typically this will mean that with an 8-bit engine, accented values can
be typeset directly whilst in Unicode engines, standard category code setup will apply.

If more than one line of text is returned by the (cmd), these will be separated by
character 13 (*~M) tokens of category code 12. In most cases, \sys_split_query:nnnN
should be preferred when multi-line output is expected.

\sys_split_query:nN {(cmd)} (seq var)
\sys_split_query:nnN {(cmd)} {(spec)} (seq var)
\sys_split_query:nnnN {(cmd)} {{options)} {(spec)} (seq var)

Works as described for \sys_split_query:nnnN, but sets the (seq var) to contain one
entry for each line returned by 13sys-query. This function should therefore be preferred
where multi-line return is expected, e.g. for the 1s command.

10.9 Loading configuration data

\sys_load_backend:n {(backend)}

Loads the additional configuration file needed for backend support. If the (backend) is
empty, the standard backend for the engine in use will be loaded. This command may
only be used once.

\sys_ensure_backend:

Ensures that a backend has been loaded by calling \sys_load_backend:n if required.

80

\c_sys_backend_str Set to the name of the backend in use by \sys_load_backend:n when issued. Possible
values are

e pdftex
e luatex
e xetex

e dvips

e dvipdfmx

e dvisvgm

\sys_load_debug: \sys_load_debug:

Load the additional configuration file for debugging support.

10.9.1 Final settings

\sys_finalize: \sys_finalize:

New: 2025-05-25 Finalizes all system-dependent functionality: required before loading a backend.

81

Chapter 11

The 13msg module
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The I13msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by 13msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behavior
can be altered and messages can be entirely suppressed.

11.1 Creating new messages

All messages have to be created before they can be used. The text of messages is auto-
matically wrapped to the length available in the console. As a result, formatting is only
needed where it helps to show meaning. In particular, \\ may be used to force a new
line and \, forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be used to
produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the IXTEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow to filter out specifically messages from the submodule.
Some authors may find the need to include spaces as ~ characters tedious. This can
be avoided by locally resetting the category code of .

82

\char_set_catcode_space:n { ‘\ }
\msg_new:nnn { foo } { bar }

{Some message text using ’#1’ and usual message shorthands \{ \ \ \}.}
\char_set_catcode_ignore:n { ‘\ }

although in general this may be confusing; simply writing the messages using ~ characters
is the method favored by the team.

\msg_new:nnnn \msg_new:nnnn {(module)} {(message)} {(text)} {(more text)}
\msg_new:nnee
\msg_new:nnn
\msg_new:nne

Creates a (message) for a given (module). The message is defined to first give (text) and
then (more text) if the user requests it. If no (more text) is available then a standard
text is given instead. Within (text) and (more text) four parameters (#1 to #4) can
be used: these will be supplied at the time the message is used. An error is raised if the
(message) already exists.

\msg_set:nnnn \msg_set:nnnn {(module)} {(message)} {(text)} {(more text)}

Amsg_setiman g up the text for a (message) for a given (module). The message is defined to first

give (text) and then (more text) if the user requests it. If no (more text) is available
then a standard text is given instead. Within (text) and (more text) four parameters
(#1 to #4) can be used: these will be supplied at the time the message is used.

\msg_if_exist_p:nn * \msg_if_exist_p:nn {(module)} {(message)}
\msg_if_exist:nnTF * \msg_if_exist:nnTF {(module)} {(message)} {(true code)} {(false code)}

Tests whether the (message) for the (module) is currently defined.

11.2 Customizable information for message modules

\msg_module_name:n * \msg_module_name:n {(module)}

Expands to the public name of the (module) as defined by \g_msg_module_name_prop
(or otherwise leaves the (module) unchanged).

\msg_module_type:n * \msg_module_type:n {(module)}

Expands to the description which applies to the (module), for example a Package or
Class. The information here is defined in \g_msg_module_type_prop, and will default
to Package if an entry is not present.

\g_msg_module_name_prop Provides a mapping between the module name used for messages, and that for documen-
tation.

\g_msg_module_type_prop Provides a mapping between the module name used for messages, and that type of
module. For example, for IATEX3 core messages, an empty entry is set here meaning that
they are not described using the standard Package text.

83

\msg_line_context:

\msg_line_number: x

\msg_fatal_text:n *

\msg_critical_text:n *

\msg_error_text:n x*

\msg_warning_text:n *

11.3 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

\msg_line_number:

Prints the current line number when a message is given.

\msg_fatal_text:n {(module)}

Produces the standard text
Fatal Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. Any redefinition must produce output
containing the (module) name, and will affect all messages using the expl3 mechanism.

\msg_critical_text:n {(module)}

Produces the standard text
Critical Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. Any redefinition must produce output
containing the (module) name, and will affect all messages using the expl3 mechanism.

\msg_error_text:n {(module)}

Produces the standard text
Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. Any redefinition must produce output
containing the (module) name, and will affect all messages using the expl3 mechanism.

\msg_warning_text:n {(module)}

Produces the standard text
Package (module) Warning

This function can be redefined to alter the language in which the message is given,
using #1 as the name of the (module) to be included. The (type) of (module) may be
adjusted: Package is the standard outcome: see \msg_module_type:n. Any redefinition
must produce output containing the (module) name, and will affect all messages using
the expl3 mechanism.

84

\msg_info_text:n *

\msg_info_text:n {(module)}

Produces the standard text:
Package (module) Info

This function can be redefined to alter the language in which the message is given,
using #1 as the name of the (module) to be included. The (type) of (module) may be
adjusted: Package is the standard outcome: see \msg_module_type:n. Any redefinition
must produce output containing the (module) name, and will affect all messages using
the expl3 mechanism.

\msg_see_documentation_text:

n x \msg_see_documentation_text:n {(module)}

Produces the standard text
See the (module) documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The name of the (module) is produced
using \msg_module_name:n.

11.4 Issuing messages

Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments are ignored, or
empty arguments added (of course the sense of the message may be impaired). The four
arguments are converted to strings before being added to the message text: the e-type
variants should be used to expand material. Note that this expansion takes place with
the standard definitions in effect, which means that shorthands such as \~ or \\ are not
available; instead one should use \iow_char:N \~ and \iow_newline:, respectively. The
following message classes exist:

o fatal, ending the TEX run;
e critical, ending the file being input;
e error, interrupting the TEX run without ending it;

e warning, written to terminal and log file, for important messages that may require
corrections by the user;

o note (less common than info) for important information messages written to the
terminal and log file;

e info for normal information messages written to the log file only;

e term and log for un-decorated messages written to the terminal and log file, or to
the log file only;

e none for suppressed messages.

85

\msg_fatal:nnnnnn \msg_fatal:nnnnnn {(module)} {(message)} {(arg ome)} {(arg two)} {(arg

\msg_fatal:nneeee three)} {(arg four)}

\msg_fatal :nnnnn

\msg_fatal:(nneee|nnnee)

\msg_fatal:nnnn

\msg_fatal:(nnVV|/nnVn|nnnV|nnee|nnne)

\msg_fatal:nnn

\msg_fatal:(nnV|nne)

\msg_fatal:nn
Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run halts. No PDF file will be produced in
this case (DVI mode runs may produce a truncated DVI file).

\msg_critical :nnnnnn \msg_critical:nnnnnn {(module)} {(message)} {(arg ome)} {(arg two)}

\msg_critical :nneeee {(arg three)} {(arg four)}

\msg_critical:nnnnn
\msg_critical:(nneee|nnnee)
\msg_critical:nnnn
\msg_critical:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_critical:nnn
\msg_critical:(nnV|nne)
\msg_critical:nn

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a critical error, TEX stops reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_error:
:nneeee three)} {(arg four)}
\msg_error:
\msg_error:
\msg_error:
\msg_error:
\msg_error:
\msg_error:
\msg_error:

\msg_error

nnnnnn \msg_error:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg

nnnnn

(nneee|nnnee)

nnnn
(nnVV|nnVn|nnnV|nnee|nnne)
nnn

(nnV|nne)

nn

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. The error interrupts processing and issues the text at the terminal. After user
input, the run continues.

86

\msg_warning:
\msg_warning:
\msg_warning:
\msg_warning:
\msg_warning:
\msg_warning:
\msg_warning:
\msg_warning:
\msg_warning:

nnnnnn \msg_warning:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {({arg
nneeee three)} {(arg four)}

nnnnn

(nneee|nnnee)

nnnn

(nnVV|nnVn|nnnV|nnee|nnne)

nnn

(nnV|nne)

nn

Issues (module) warning (message), passing (arg one) to (arg four) to the text-
creating functions. The warning text is added to the log file and the terminal, but
the TEX run is not interrupted.

\msg_note:nnn:
\msg_note:nne
\msg_note:nnn

nnn \msg_note:nnnnnn {({module)} {(message)} {(arg ome)} {({arg two)} {(arg
eee three)} {(arg four)}
nn \msg_info:nnnnnn {(module)} {(message)} {{arg one)} {(arg two)} {(arg

\msg_note: (nneee|nnnee) three)} {(arg four)}

\msg_note:nnn

n

\msg_note: (nnVV|nnVn|/nnnV|nnee|nnne)

\msg_note:nnn

\msg_note: (nnV|nne)

\msg_note:nn

\msg_info:nnnnnn

\msg_info:nne

eee

\msg_info:nnnnn
\msg_info:(nneee|nnnee)
\msg_info:nnnn
\msg_info:(nnVV|nnVn|/nnnV|nnee|nnne)

\msg_info:nnn

\msg_info:(nnV|nne)

\msg_info:nn

New: 2021-05-18

Issues (module) information (message), passing (arg one) to (arg four) to the text-
creating functions. For the more common \msg_info:nnnnnn, the information text is
added to the log file only, while \msg_note:nnnnnn adds the info text to both the log file
and the terminal. The TEX run is not interrupted.

87

\msg_term:nnnnnn \msg_term:nnnnnn {({module)} {(message)} {(arg ome)} {({arg two)} {(arg

\msg_term:nneeee three)} {(arg four)}
\msg_term:nnnnn \msg_log:nnnnnn {(module)} {(message)} {(arg one)} {({arg two)} {({arg
\msg_term: (nneee|nnnee) three)} {(arg four)}

\msg_term:nnnn

\msg_term: (nnVV|nnVn|nnnV|nnee|nnne)
\msg_term:nnn

\msg_term: (nnV|nne)

\msg_term:nn

\msg_log:nnnnnn

\msg_log:nneeee

\msg_log:nnnnn

\msg_log: (nneee|nnnee)

\msg_log:nnnn

\msg_log:(nnVV|nnVn|nnnV|nnee|nnne)

\msg_log:nnn

\msg_log: (nnV|nne)

\msg_log:nn
Issues (module) information (message), passing (arg omne) to (arg four) to the text-
creating functions. The output is briefer than \msg_info:nnnnnn, omitting for in-
stance the module name. It is added to the log file by \msg_log:nnnnnn while \msg_-
term:nnnnnn also prints it on the terminal.

\msg_none :nnnnnn \msg_none:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg

\msg_none:nneeee three)} {(arg four)}

\msg_none :nnnnn

\msg_none: (nneee|nnnee)

\msg_none :nnnn

\msg_none: (nnVV|nnVn|nnnV|nnee|nnne)
\msg_none :nnn

\msg_none: (nnV|nne)

\msg_none:nn

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

88

11.4.1 Messages for showing material

\msg_show:nnnnnn \msg_show:nnnnnn {{module)} {(message)} {(arg ome)} {(arg two)} {(arg
\msg_show:nneeee three)} {(arg four)}

\msg_show:nnnnn

\msg_show: (nneee|nnnee)

\msg_show:nnnn

\msg_show: (nnVV|nnVn|nnnV|nnee|nnne)

\msg_show:nnn

\msg_show: (nnV|nne)

\msg_show:nn

Issues (module) information (message), passing (arg ome) to (arg four) to the text-
creating functions. The information text is shown on the terminal and the TEX run is
interrupted in a manner similar to \t1_show:n. This is used in conjunction with \msg_-
show_item:n and similar functions to print complex variable contents completely. If the
formatted text does not contain >~ at the start of a line, an additional line >~. will be
put at the end. In addition, a final period is added if not present.

\msg_show_item:n * \seq_map_function:NN (seq var) \msg_show_item:n
\msg_show_item_unbraced:n * \prop_map_function:NN (property list) \msg_show_item:nn
\msg_show_item:nn *

\msg_show_item_unbraced:nn *

Used in the text of messages for \msg_show:nnnnnn to show or log a list of items or
key—value pairs. The output of \msg_show_item:n produces a newline, the prefix >,
two spaces, then the braced string representation of its argument. The two-argument
versions separates the key and value using _.=>_.,, and the unbraced versions don’t
print the surrounding braces.

These functions are suitable for usage with iterator functions like \seq_map_-
function:NN, \prop_map_function:NN, etc. For example, with a sequence \1_tmpa_seq
containing a, {b} and \c,

\seq_map_function:NN \1_tmpa_seq \msg_show_item:n
would expand to three lines:

>uu{a}
>Lu{{b}}
>Lu{\cut

11.4.2 Expandable error messages

In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error :nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools
to print to the terminal or the log file are expandable. As a result, short-hands such as
\{ or \\ do not work, and messages must be very short (with default settings, they are
truncated after approximately 50 characters). It is advisable to ensure that the message

89

is understandable even when truncated, by putting the most important information up
front. Another particularity of expandable messages is that they cannot be redirected or
turned off by the user.

\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:

nnnnnn + \msg_expandable_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)}
nnffff * {(arg three)} {(arg four)}

nnnnn
nnfff
nnnn
nnff
nnn
nnf
nn

*

*
*
*
*
*
*

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\777? then prints “! (module): (error message)”, which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

11.5 Redirecting messages

Each message has a “name”, which can be used to alter the behavior of the message when
it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }
to define a message, with
\msg_error:nn { module } { my-message }

when it is used. With no filtering, this raises an error. However, we could alter the
behavior with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with
\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even
\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class raises an error
immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A — B, B — C and C — A in this order, then the A — B redirection is
cancelled.

90

\msg_redirect_class:nn

\msg_redirect_module:nnn

\msg_redirect_name:nnn

\msg_redirect_class:nn {(class one)} {(class two)}

Changes the behavior of messages of (class one) so that they are processed using the
code for those of (class two). Each (class) can be one of fatal, critical, error,
warning, note, info, term, log, none.

\msg_redirect_module:nnn {(module)} {(class ome)} {(class two)}

Redirects message of (class one) for (module) to act as though they were from (class
two). Messages of (class one) from sources other than (module) are not affected by
this redirection. This function can be used to make some messages “silent” by default.
For example, all of the warning messages of (module) could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_name:nnn {(module)} {(message)} {(class)}

Redirects a specific (message) from a specific (module) to act as a member of (class)
of messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

91

Chapter 12

The 13file module
File and I/0O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_. .., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX attempts to locate
them using both the operating system path and entries in the TEX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a (file name) argument, this argument may contain
both literal items and expandable content, which should on full expansion be the desired
file name. Active characters (as declared in \1_char_active_seq) are not expanded,
allowing the direct use of these in file names. Quote tokens (") are not permitted in file
names as they are reserved for internal use by some TEX primitives.

Spaces are trimmed at the beginning and end of the file name: this reflects the
fact that some file systems do not allow or interact unpredictably with spaces in these
positions. When no extension is given, this will trim spaces from the start of the name
only.

12.1 Input—output stream management

As TgX engines have a limited number of input and output streams, direct use of the
streams by the programmer is not supported in I¥TEX3. Instead, an internal pool of
streams is maintained, and these are allocated and deallocated as needed by other mod-
ules. As a result, the programmer should close streams when they are no longer needed,
to release them for other processes.

Note that I/O operations are global: streams should all be declared with global
names and treated accordingly.

92

\ior_new:N
\ior_new:c
\iow_new:N
\iow_new:c

\ior_open:Nn
\ior_open:cn

\ior_open:NnTF
\ior_open:cnTF

\iow_open:Nn
\iow_open: (NV|cn|cV)

\ior_shell_open:Nn

\iow_shell_open:Nn

New: 2023-05-25

\ior_new:N (stream)

\iow_new:N (stream)

Globally reserves the name of the (stream), either for reading or for writing as appropri-
ate. The (stream) is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a (stream) which has not been opened is an error, and the (stream)
will behave as the corresponding \c_term_. ...

\ior_open:Nn (stream) {(file name)}

Opens (file name) for reading using (stream) as the control sequence for file access.
If the (stream) was already open it is closed before the new operation begins. The
(stream) is available for access immediately and will remain allocated to (file name)
until an \ior_close:N instruction is given or the TEX run ends. If the file is not found,
an error is raised.

\ior_open:NnTF (stream) {(file name)} {(true code)} {(false code)}

Opens (file name) for reading using (stream) as the control sequence for file access.
If the (stream) was already open it is closed before the new operation begins. The
(stream) is available for access immediately and will remain allocated to (file name)
until a \ior_close:N instruction is given or the TEX run ends. The (true code) is then
inserted into the input stream. If the file is not found, no error is raised and the (false
code) is inserted into the input stream.

\iow_open:Nn (stream) {(file name)}

Opens (file name) for writing using (stream) as the control sequence for file access.
If the (stream) was already open it is closed before the new operation begins. The
(stream) is available for access immediately and will remain allocated to (file name)
until a \iow_close:N instruction is given or the TEX run ends. Opening a file for writing
clears any existing content in the file (i.e., writing is not additive).

\ior_shell_open:Nn (stream) {(shell command)}

Opens the pseudo-file created by the output of the (shell command) for reading using
(stream) as the control sequence for access. If the (stream) was already open it is closed
before the new operation begins. The (stream) is available for access immediately and
will remain allocated to (shell command) until a \ior_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the (shell command), see \sys_get_shell :nnNTF.

\iow_shell_open:Nn (stream) {(shell command)}

Opens the pseudo-file created by the output of the (shell command) for writing using
(stream) as the control sequence for access. If the (stream) was already open it is closed
before the new operation begins. The (stream) is available for access immediately and
will remain allocated to (shell command) until an \iow_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the (shell command), see \sys_get_shell :nnNTF.

93

\ior_close

\iow_close

:N
\ior_close:c
:N
\iow_close:c

\ior_show:N

\ior_show:c
\ior_log:N
\ior_log:c
\iow_show:N
\iow_show:c
\iow_log:N

\iow_log:c

New: 2021-05-11

\ior_show_list:

\ior_log_list:
\iow_show_list:

\iow_log_list:

\ior_close:N (stream)
\iow_close:N (stream)

Closes the (stream). Streams should always be closed when they are finished with as
this ensures that they remain available to other programmers.

\ior_show:N (stream)

\ior_log:N (stream)

\iow_show:N (stream)

\iow_log:N (stream)

Display (to the terminal or log file) the file name associated to the (read or write)
(stream).

\ior_show_list:

\ior_log_list:

\iow_show_list:

\iow_log_list:

Display (to the terminal or log file) a list of the file names associated with each open
(read or write) stream. This is intended for tracking down problems.

12.1.1 Reading from files

Reading from files and reading from the terminal are separate processes in expl3. The
functions \ior_get:NN and \ior_str_get:NN, and their branching equivalents, are de-
signed to work with files.

94

\ior_get:NN
\ior_get:NNTF

\ior_str_get:NN
\ior_str_get:NNTF

\ior_get:NN (stream) (tl var)
\ior_get:NNTF (stream) (tl var) {(true code)} {(false code)}

Function that reads one or more lines (until an equal number of left and right braces are
found) from the file input (stream) and stores the result locally in the (token list)
variable. The material read from the (stream) is tokenized by TEX according to the
category codes and \endlinechar in force when the function is used. Assuming normal
settings, any lines which do not end in a comment character % have the line ending
converted to a space, so for example input

ab c

results in a token list a_b_,c,. Any blank line is converted to the token \par. Therefore,
blank lines can be skipped by using a test such as

\ior_get:NN \1_my_ior \1_tmpa_tl
\tl_set:Nn \1_tmpb_tl1 { \par }
\tl_if_eq:NNF \1_tmpa_tl \1_tmpb_tl

Also notice that if multiple lines are read to match braces then the resulting token list
can contain \par tokens. In the non-branching version, where the (stream) is not open
the (t1 var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the TEX primitive \read.
Regardless of settings, TEX replaces trailing space and tab characters (character codes 32 and 9)
in each line by an end-of-line character (character code \endlinechar, omitted if \endlinechar
is negative or too large) before turning characters into tokens according to current category
codes. With default settings, spaces appearing at the beginning of lines are also ignored.

\ior_str_get:NN (stream) (tl var)
\ior_str_get:NNTF (stream) (tl var) {(true code)} {(false code)}

Function that reads one line from the file input (stream) and stores the result locally in
the (token 1ist) variable. The material is read from the (stream) as a series of tokens
with category code 12 (other), with the exception of space characters which are given
category code 10 (space). Multiple whitespace characters are retained by this process. It
always only reads one line and any blank lines in the input result in the (t1 var) being
empty. Unlike \ior_get :NN, line ends do not receive any special treatment. Thus input

ab c

results in a token list a b ¢ with the letters a, b, and ¢ having category code 12. In
the non-branching version, where the(stream) is not open the (t1 var) is set to \q_-
no_value.

TEXhackers note: This protected macro is a wrapper around the e-TEX primitive
\readline. Regardless of settings, TEX removes trailing space and tab characters (character
codes 32 and 9). However, the end-line character normally added by this primitive is not in-
cluded in the result of \ior_str_get:NN.

All mappings are done at the current group level, i.e., any local assignments made
by the (function) or (code) discussed below remain in effect after the loop.

95

\ior_map_inline:Nn

\ior_str_map_inline:Nn

\ior_map_variable:NNn

\ior_str_map_variable:NNn

\ior_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to each set of (1ines) obtained by calling \ior_get:NN
until reaching the end of the file. TEX ignores any trailing new-line marker from the file
it reads. The (inline function) should consist of code which receives the (1ine) as
#1.

\ior_str_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to every (line) in the (stream). The material is read
from the (stream) as a series of tokens with category code 12 (other), with the exception
of space characters which are given category code 10 (space). The (inline function)
should consist of code which receives the (1ine) as #1. Note that TEX removes trailing
space and tab characters (character codes 32 and 9) from every line upon input. TEX
also ignores any trailing new-line marker from the file it reads.

\ior_map_variable:NNn (stream) (tl var) {(code)}

For each set of (1ines) obtained by calling \ior_get:NN until reaching the end of the
file, stores the (1ines) in the (t1 var) then applies the (code). The (code) will usually
make use of the (variable), but this is not enforced. The assignments to the (variable)
are local. Its value after the loop is the last set of (lines), or its original value if the
(stream) is empty. TEX ignores any trailing new-line marker from the file it reads. This
function is typically faster than \ior_map_inline:Nn.

\ior_str_map_variable:NNn (stream) (variable) {(code)}

For each (1line) in the (stream), stores the (1ine) in the (variable) then applies the
(code). The material is read from the (stream) as a series of tokens with category
code 12 (other), with the exception of space characters which are given category code 10
(space). The (code) will usually make use of the (variable), but this is not enforced.
The assignments to the (variable) are local. Its value after the loop is the last (1ine),
or its original value if the (stream) is empty. Note that TEX removes trailing space and
tab characters (character codes 32 and 9) from every line upon input. TEX also ignores
any trailing new-line marker from the file it reads. This function is typically faster than
\ior_str_map_inline:Nn.

96

\ior_map_break: \ior_map_break:

Used to terminate a \ior_map_. .. function before all lines from the (stream) have been
processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\ior_map_break:n \ior_map_break:n {{code)}

Used to terminate a \ior_map_... function before all lines in the (stream) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\ior_map_inline:Nn \1_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\ior_if_eof_p:N x \ior_if_eof_p:N (stream)
\ior_if_eof:NTF x \ior_if_eof:NTF (stream) {(true code)} {(false code)}

Tests if the end of a file (stream) has been reached during a reading operation. The test
also returns a true value if the (stream) is not open.

97

\ior_get_term:nN
\ior_str_get_term:nN

\iow_now:Nn
\iow_now:(NV|Ne|cn|cV|ce)

\iow_log:n
\iow_log:e

\iow_show:n
\iow_show:e

New: 2025-05-19

\iow_term:n
\iow_term:e

\iow_shipout:Nn
\iow_shipout:(Ne|cn|ce)

12.1.2 Reading from the terminal

\ior_get_term:nN {(prompt)} (tl var)

Function that reads one or more lines (until an equal number of left and right braces
are found) from the terminal and stores the result locally in the (token 1ist) variable.
Tokenization occurs as described for \ior_get:NN or \ior_str_get:NN, respectively.
When the (prompt) is empty, TEX will wait for input without any other indication:
typically the programmer will have provided a suitable text using e.g. \iow_term:n.
Where the (prompt) is given, it will appear in the terminal followed by an =, e.g.

prompt=

12.1.3 Writing to files

\iow_now:Nn (stream) {(tokens)}

This function writes (tokens) to the specified (stream) immediately (i.e., the write
operation is called on expansion of \iow_now:Nn).

\iow_log:n {(tokens)}

This function writes the given (tokens) to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

\iow_show:n {(tokens)}

This function writes the given (tokens) immediately to the same output as used by
\show and \showtokens. At the start of a TEX run this will be the terminal, but may
be redirected to a file if the primitive \showsteam has been set.

TEXhackers note: At present, there is no expl3 interface to set \showstream, but use
of the \iow_show:n function is encouraged in places where direct writing to an I/O stream is
intermixed with show functions.

\iow_term:n {(tokens)}

This function writes the given (tokens) to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

\iow_shipout:Nn (stream) {(tokens)}

This function writes (tokens) to the specified (stream) when the current page is finalized
(i.e., at shipout). The e-type variants expand the (tokens) at the point where the
function is used but not when the resulting tokens are written to the (stream) (cf. \iow_-
shipout_e:Nn).

TEXhackers note: When using expl3 with a format other than ITEX, new line char-
acters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional
unwanted line-breaks.

98

\iow_shipout_e:Nn

\iow_shipout_e:(Ne|cn|ce)

Updated: 2023-09-17

\iow_char:N *

\iow_newline:

*

\iow_shipout_e:Nn (stream) {(tokens)}

This function writes (tokens) to the specified (stream) when the current page is finalized
(i.e., at shipout). The (tokens) are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalized during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than ETEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn.
This may lead to the insertion of additional unwanted line-breaks.

\iow_char:N \(char)
Inserts (char) into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Ne \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_newline:

Function to add a new line within the (tokens) written to a file. The function has
no effect if writing is taking place without expansion (e.g. in the second argument of
\iow_now:Nn).

TgXhackers note: When using expl3 with a format other than KTEX, the character in-
serted by \iow_newline: is not recognized by TEX, which may lead to the insertion of additional
unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_e:Nn and direct
uses of primitive operations.

99

\iow_wrap:nnnN
\iow_wrap:nenN

\iow_wrap_allow_break:

New: 2023-04-25

\iow_indent:n

12.1.4 Wrapping lines in output

\iow_wrap:nnnN {(text)} {(run-on text)} {(set up)} (function)

This function wraps the (text) to a fixed number of characters per line. At the start
of each line which is wrapped, the (run-on text) is inserted. The line character count
targeted is the value of \1_iow_line_count_int minus the number of characters in the
(run-on text) for all lines except the first, for which the target number of characters is
simply \1_iow_line_count_int since there is no run-on text. The (text) and (run-on
text) are exhaustively expanded by the function, with the following substitutions:

e \\ or \iow_newline: may be used to force a new line,
« \u may be used to represent a forced space (for example after a control sequence),
o \#, \%, \{, \}, \~ may be used to represent the corresponding character,

e \iow_wrap_allow_break: may be used to allow a line-break without inserting a
space,

e \iow_indent:n may be used to indent a part of the (text) (not the (run-on
text)).

Additional functions may be added to the wrapping by using the (set up), which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the (text) which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
(function), which is typically a wrapper around a write operation. The output of
\iow_wrap:nnnN (i.e., the argument passed to the (function)) consists of characters of
category “other” (category code 12), with the exception of spaces which have category
“space” (category code 10). This means that the output does not expand further when
written to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an e-type expansion on the
(text) to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the (text).

\iow_wrap_allow_break:

In the first argument of \iow_wrap:nnnN (for instance in messages), inserts a break-point
that allows a line break. If no break occurs, this function adds nothing to the output.

\iow_indent:n {(text)}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents (text) by
four spaces. This function does not cause a line break, and only affects lines which start
within the scope of the (text). In case the indented (text) should appear on separate
lines from the surrounding text, use \\ to force line breaks.

100

\1_iow_line_count_int The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEX Live and MiKTEX systems.

12.1.5 Constant input—output streams, and variables

\g_tmpa_ior Scratch input stream for global use. These are never used by the kernel code, and so
\g_tmpb_ior are safe for use with any IWTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\c_log_iow Constant output streams for writing to the log and to the terminal (plus the log), respec-
\c_term_iow tively.

\g_tmpa_iow Scratch output stream for global use. These are never used by the kernel code, and so
\g_tmpb_iow are safe for use with any IATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

12.1.6 Primitive conditionals

\if_eof:w * \if_eof:w (stream)
— (true code)
\else:
(false code)
\fi:
Tests if the (stream) returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

12.2 File operations

12.2.1 Basic file operations

\g_file_curr_dir_str Contain the directory, name and extension of the current file. The directory is empty if
\g_file_curr_name_str the file was loaded without an explicit path (i.e., if it is in the TEX search path), and
\g_file_curr_ext_stT {ges ot end in / other than the case that it is exactly equal to the root directory. The
(name) and (ext) parts together make up the file name, thus the (name) part may be
thought of as the “job name” for the current file.
Note that TEX does not provide information on the (dir) and (ext) part for the
main (top level) file and that this file always has empty (dir) and (ext) components.
Also, the (name) here will be equal to \c_sys_jobname_str, which may be different from
the real file name (if set using --jobname, for example).

101

\1_file_search_path_seq

Updated: 2023-06-15

\file_if_exist_p:n %
\file_if_exist_p:V =
\file_if_exist:nTF x
\file if exist:VIF =%

Updated: 2023-09-18

\file_forget:n

New: 2024-12-09

\file_hex_dump:n pxe
\file_hex_dump:V W
\file_hex_dump:nnn 5
\file_hex_dump:Vnn 5

Each entry is the path to a directory which should be searched when seeking a file. Each
path can be relative or absolute, and need not include the trailing slash. Spaces need not
be quoted.

TEXhackers note: When working as a package in KXTEX 2¢, expl3 will automatically
append the current \input@path to the set of values from \1_file_search_path_seq

\file_if_exist_p:n {(file name)}
\file_if_exist:nTF {(file name)} {(true code)} {(false code)}
Expands the argument of the (file name) to give a string, then searches for this string
using the current TEX search path and the additional paths controlled by \1_file_-
search_path_seq.

Since TEX cannot remove files, only write to them, once a file has been found during
a TEX run, it will exist until the end of the run unless a non-TEX process intervenes.
Since file operations are relatively slow, expl3 therefore internally tracks when a file is
seen, and uses this information to avoid multiple filesystem checks. See \file_forget:n
for how to indicate to expl3 that a file may have been deleted during a TEX run, so that
its presence in the filesystem can be reasserted with \file_if_exist:nTF and similar
commands.

\file_forget:n {(file name)}

Resets the internal tracker for files such that a subsequent use of \file_if_exist:nTF,
\file_size:n, etc., for the (file name) will re-query the filesystem rather than use any
cached information. This can be used whether or not the file has previously been seen.
This function is intended to be used where non-TEX processes may result in file deletion,
for example if LuaTgX is in use, os.remove() may be used to delete a file part-way
through a run.

12.2.2 Information about files and file contents

Functions in this section return information about files as expl3 str data, except that the
non-expandable functions set their return token list to \q_no_value if the file requested
is not found. As such, comparison of file names, hashes, sizes, etc., should use \str_-
if_eq:nnTF rather than \t1l_if_eq:nnTF and so on.

\file_hex_dump:n {(file name)}

\file_hex_dump:nnn {(file name)} {(start index)} {(end index)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the hexadecimal
dump of the file content in the input stream. The file is read as bytes, which means
that in contrast to most TEX behavior there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty. The {(start index)} and {{end index)} values work as
described for \str_range:nnn.

102

\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:

nN

VN
nNTF
VNTF
nnnN
VnnN
nnnNTF
VnnNTF

\file_mdfive_hash:n 3
\file_mdfive_hash:V w

\file_get_mdfive_hash:
\file_get_mdfive_hash:
\file_get_mdfive_hash:
\file_get_mdfive_hash:

nN
VN
nNTF
VNTF

\file_size:
\file_size:

< B
R

\file_get_size:
\file_get_size:
\file_get_size:
\file_get_size:

nN
VN
nNTF
VNTF

\file_timestamp:
\file_timestamp:

< B
R

\file_get_timestamp:
\file_get_timestamp:
\file_get_timestamp:
\file_get_timestamp:

nN
VN
nNTF
VNTF

\file_get_hex_dump:nN {(file name)} (tl var)

\file_get_hex_dump:nnnN {(file name)} {(start index)} {(end index)} (tl var)

Sets the (t1 var) to the result of applying \file_hex_dump:n/\file_hex_dump:nnn to
the (file). If the file is not found, the (t1 var) will be set to \q_no_value.

\file_mdfive_hash:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the MD5 sum gen-
erated from the contents of the file in the input stream. The file is read as bytes, which
means that in contrast to most TEX behavior there will be a difference in result depending
on the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty.

\file_get_mdfive_hash:nN {(file name)} (tl var)

Sets the (t1 var) to the result of applying \file_mdfive_hash:n to the (file). If the
file is not found, the (t1 var) will be set to \q_no_value.

\file_size:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the size of the file in
bytes in the input stream. When the file is not found, the result of expansion is empty.

\file_get_size:nN {(file name)} (tl var)

Sets the (t1 var) to the result of applying \file_size:n to the (file). If the file is
not found, the (t1 var) will be set to \q_no_value.

\file_timestamp:n {(file name)}

Searches for (file name) using the current TEX search path and the additional
paths controlled by \1_file_search_path_seq. It then expands to leave the mod-
ification timestamp of the file in the input stream. The timestamp is of the form
D:(year)(month)(day)(hour)(minute)(second)({offset), where the latter may be Z
(UTC) or (plus-minus)(hours)’(minutes)’. When the file is not found, the result
of expansion is empty.

\file_get_timestamp:nN {(file name)} (tl var)

Sets the (t1 var) to the result of applying \file_timestamp:n to the (file). If the file
is not found, the (t1 var) will be set to \q_no_value.

103

\file_compare_timestamp_p:nNn * \file_compare_timestamp_p:nNn {(file-1)
\file_compare_timestamp_p:(nNV|VNn|VNV) % \file_compare_timestamp:nNnTF {(file-1)
\file_compare_timestamp:nNnTF *x code)} {(false code)}
\file_compare_timestamp:(nNV|VNn|VNV)TF x

(file-2)}
(file-2)} {(true

} (relatiom) {
} (relatiom) {

Compares the file stamps on the two (files) as indicated by the (relation), and inserts
either the (true code) or (false case) as required. A file which is not found is treated
as older than any file which is found. This allows for example the construct

\file_compare_timestamp:nNnT { source-file } > { derived-file }
{
% Code to regenerate derived file

}

to work when the derived file is entirely absent. The timestamp of two absent files is
regarded as different.

\file_get_full_name:nN \file_get_full_name:nN {(file name)} (t1 var)
\file_get_full _name:VN \file_get_full_name:nNTF {(file name)} (t1 var) {(true code)} {(false code)}

\f:!.le_get_full_na.me:nNH' Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
\file get_full name:VNIF sets the (t1 var) the fully-qualified name of the file, i.e., the path and file name. This
includes an extension .tex when the given (file name) has no extension but the file
found has that extension. In the non-branching version, the (t1 var) will be set to

\gq_no_value in the case that the file does not exist.

\file_full_name:n % \file_full_name:n {(file name)}

i V5% . . .
Mile full name:V ¥ go.rches for (file name) in the path as detailed for \file_if_exist:nTF, and if found

leaves the fully-qualified name of the file, i.e., the path and file name, in the input stream.
This includes an extension .tex when the given (file name) has no extension but the
file found has that extension. If the file is not found on the path, the expansion is empty.

\file_parse_full_name:nNNN \file_parse_full_name:nNNN {(full name)} (dir) (name) (ext)

fil full : VNNN el e . . .
\file parse_full name Parses the (full name) and splits it into three parts, each of which is returned by setting

Updated: 2020-06-24 the appropriate local string variable:

e The (dir): everything up to the last / (path separator) in the (file path). As
with system PATH variables and related functions, the (dir) does not include the
trailing / unless it points to the root directory. If there is no path (only a file
name), (dir) is empty.

o The (name): everything after the last / up to the last ., where both of those
characters are optional. The (name) may contain multiple . characters. It is empty
if (full name) consists only of a directory name.

o The (ext): everything after the last . (including the dot). The (ext) is empty if
there is no . after the last /.

Before parsing, the (full name) is expanded until only non-expandable tokens re-
main, except that active characters are also not expanded. Quotes (") are invalid in file
names and are discarded from the input.

104

\file_parse_full_name:n *
\file_parse_full_name:V %

New: 2020-06-24

\file_parse_full_name:n {(full name)}

Parses the (full name) as described for \file_parse_full_name:nNNN, and leaves
(dir), (name), and (ext) in the input stream, each inside a pair of braces.

\file_parse_full_name_apply:nN * \file_parse_full_name_apply:nN {(full name)} (function)

\file_parse_full_name_apply:VN x

New: 2020-06-24

\file_get:nnN
\file_get:VnN
\file_get:nnNTF
\file_get:VnNTF

\file_input:n
\file_input:V

\file_input_raw:n *
\file_input_raw:V *

New: 2023-05-18
Updated: 2025-05-26

\file_if_exist_input:n
\file_if_exist_input:V
\file_if_exist_input:nF
\file_if_exist_input:VF

Parses the (full name) as described for \file_parse_full_name:nNNN, and passes
(dir), (name), and (ext) as arguments to (function), as an n-type argument each,
in this order.

12.2.3 Accessing file contents

\file_get:nnN {(file name)} {(setup)} (tl var)
\file_get:nnNTF {(file name)} {(setup)} (tl var) {(true code)} {(false code)}

Defines (t1 var) to the contents of (file name). Category codes may need to be set
appropriately via the (setup) argument. The non-branching version sets the (t1 var)
to \q_no_value if the file is not found. The branching version runs the (true code)
after the assignment to (t1 var) if the file is found, and (false code) otherwise. The
file content will be tokenized using the current category code régime,

\file_input:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional IXTEX source. All files read are recorded for information
and the file name stack is updated by this function. An error is raised if the file is not
found.

\file_input_raw:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional TEX source. No data concerning the file is tracked. If the
file is not found, no action is taken.

TEXhackers note: This function requires the availability of the \input primitive accepting
braces (LuaTgX or other engines from TEX Live 2020 onwards.)

This function is intended only for contexts where files must be read purely by expansion,
for example at the start of a table cell in an \halign.

\file_if_exist_input:n {(file name)}

\file_if_exist_input:nF {(file name)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
included in \1_file_search_path_seq. If found then reads in the file as additional IXTEX
source as described for \file_input:n, otherwise inserts the (false code). Note that
these functions do not raise an error if the file is not found, in contrast to \file_input:n.

105

\file_input_stop:

\file_show_list:

\file_log_list:

\file_input_stop:

Ends the reading of a file started by \file_input:n or similar before the end of the
file is reached. Where the file reading is being terminated due to an error, \msg_-
critical:nn(nn) should be preferred.

TEXhackers note: This function must be used on a line on its own: TEX reads files
line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal
case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line
by itself in the definition doesn’t help as it is the line where it is used that counts!

\file_show_list:
\file_log_list:

These functions list all files loaded by IXTEX 2¢ commands that populate \@filelist or
by \file_input:n. While \file_show_list: displays the list in the terminal, \file_-
log_list: outputs it to the log file only.

106

\lua_now:n *
\lua_now:e *

\lua_shipout_e:n
\lua_shipout:n

Chapter 13

The I3luatex module
LuaTgX-specific functions

The LuaTgX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX, pIEX, uplEX or X{qIEX these
raise an error: use \sys_if_engine_luatex:T to avoid this. Details on using Lua with
the LuaTgEX engine are given in the LualTEX manual.

13.1 Breaking out to Lua

\lua_now:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces
in the usual TEX manner and which respects currently-applicable TEX category codes.
The resulting (Lua input) is passed to the Lua interpreter for processing. Each \lua_-
now:n block is treated by Lua as a separate chunk. The Lua interpreter executes the
(Lua input) immediately, and in an expandable manner.

TEXhackers note: \lua_now:e is a macro wrapper around \directlua: when LuaTgX is
in use two expansions are required to yield the result of the Lua code.

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter when the current
page is finalized (i.e., at shipout). Each \lua_shipout:n block is treated by Lua as
a separate chunk. The Lua interpreter will execute the (Lua input) during the page-
building routine: no TEX expansion of the (Lua input) will occur at this stage.

In the case of the \1lua_shipout_e:n version the input is fully expanded by TEX in
an e-type manner during the shipout operation.

TEXhackers note: At a TEX level, the (Lua input) is stored as a “whatsit”.

107

\lua_escape:n *
\lua_escape:e %

\lua_load_module:n

New: 2022-05-14

1tx.utils

ltx.utils.filedump

ltx.utils.filemd5sum

ltx.utils.filemoddate

\lua_escape:n {(token list)}

Converts the (token 1ist) such that it can safely be passed to Lua: embedded back-
slashes, double and single quotes, and newlines and carriage returns are escaped. This is
done by prepending an extra token consisting of a backslash with category code 12, and
for the line endings, converting them to \n and \r, respectively.

TEXhackers note: \lua_escape:e is a macro wrapper around \luaescapestring: when
LuaTgX is in use two expansions are required to yield the result of the Lua code.

\lua_load_module:n {(Lua module name)}

Loads a Lua module into the Lua interpreter.

\lua_now:n passes its {(token list)} argument to the Lua interpreter as a single line,
with characters interpreted under the current catcode régime. These two facts mean that
\lua_now:n rarely behaves as expected for larger pieces of code. Therefore, package
authors should not write significant amounts of Lua code in the arguments to \lua_-
now:n. Instead, it is strongly recommended that they write the majorty of their Lua
code in a separate file, and then load it using \lua_load_module:n.

TEXhackers note: This is a wrapper around the Lua call require ’(module)’.

13.2 Lua interfaces

As well as interfaces for TEX, there are a small number of Lua functions provided here.

Most public interfaces provided by the module are stored within the 1tx.utils table.

(dump) = ltx.utils.filedump((file),(offset),(length))

Returns the uppercase hexadecimal representation of the content of the (file) read as
bytes. If the (Iength) is given, only this part of the file is returned; similarly, one may
specify the (offset) from the start of the file. If the (Iength) is not given, the entire
file is read starting at the (offset).

(hash) = ltx.utils.filemd5sum((file))

Returns the MD5 sum of the file contents read as bytes; note that the result will depend
on the nature of the line endings used in the file, in contrast to normal TEX behavior. If
the (file) is not found, nothing is returned with no error raised.

(date) = ltx.utils.filemoddate({file))

Returns the date/time of last modification of the (file) in the format
D:(year)(month)(day)(hour)(minute)(second)(offset)

where the latter may be Z (UTC) or (plus-minus)(hours)’(minutes)’. If the (file)
is not found, nothing is returned with no error raised.

108

ltx.utils.filesize size = ltx.utils.filesize((file))

Returns the size of the (file) in bytes. If the (file) is not found, nothing is returned
with no error raised.

109

Chapter 14

The 13legacy module
Interfaces to legacy concepts

There are a small number of TEX or I'TEX 2¢ concepts which are not used in expl3 code
but which need to be manipulated when working as a KTEX 2¢ package. To allow these
to be integrated cleanly into expl3 code, a set of legacy interfaces are provided here.

\legacy_if_p:n x \legacy_if_p:n {(name)}
\legacy_if:nTF * \legacy_if:nTF {(name)} {(true code)} {(false code)}

Tests if the IXTEX 2 /plain TEX conditional (generated by \newif) is true or false and
branches accordingly. The (name) of the conditional should omit the leading if.

\legacy_if_set_true:n \legacy_if_set_true:n {(name)}
\legacy_if_set_false:n \legacy_if_set_false:n {(name)}

ti::ig:i::gz:::;:{:enn ig‘isszhe KTEX 2¢ /plain TEX conditional \if(name) (generated by \newif) to be true or

New: 2021-05-10

\legacy_if_set:nn \legacy_if_set:nn {(name)} {(boolexpr)}

\egacy_if_gset:mn g o e KTEX 2¢ /plain TEX conditional \if (name) (generated by \newif) to the result
New: 2021-05-10 of evaluating the (boolean expression).

110

Part IV
Data types

111

\tl_new:N
\tl_new:c

Chapter 15

The 13t]l module
Token lists

TEX works with tokens, and I TEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “tl var” ((t1 var)), which have the suffix t1: a token list
variable can also be used as the argument to a function, for example

\foo:N \1_some_t1l

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix t1. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or ., {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, }, ., w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

15.1 Creating and initializing token list variables

\tl_new:N (tl1 var)

Creates a new (t1 var) or raises an error if the name is already taken. The declaration
is global. The (t1 var) is initially empty.

112

\tl_const:Nn
\tl_const:(NV|Ne|cn|cV|ce)

\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN
\tl_gset_eq:(cN|Nc|cc)

\tl_concat:NNN
\tl_concat:ccc
\t1l_gconcat:NNN
\tl_gconcat:ccc

\tl_if_exist_p:N «*
\tl_if_exist_p:c *
\tl_if_exist:NTF x
\tl_if_exist:cTF %

\tl_const:Nn (t1 var) {(tokens)}

Creates a new constant (t1 var) or raises an error if the name is already taken. The
value of the (t1 var) is set globally to the (tokens).

\tl_clear:N (tl var)

Clears all entries from the (t1 var).

\tl_clear_new:N (tl var)

Ensures that the (t1 var) exists globally by applying \t1_new:N if necessary, then ap-
plies \t1_(g)clear:N to leave the (t1I var) empty.

\tl_set_eq:NN (tl1 var;) (tl vars)

Sets the content of (t1 var;) equal to that of (t1 vars).

\tl_concat:NNN (tl1 vari) (tl vars) (tl vars)

Concatenates the content of (t1 vars) and (tl vars) together and saves the result in
(t1 vary). The (t1 vars) is placed at the left side of the new token list.

\tl_if_exist_p:N (t1 var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (t1 var) is currently defined. This does not check that the (t1 var)
really is a token list variable.

15.2 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (t1 var) {(tokens)}

\t1l_set:(NV|Nv|No|Ne|Nf|cn|cV|cv|co|ce|cE)

\tl_gset:Nn

\tl_gset:(NV|Nv|No|Ne|Nf|cn|cV|cv|co|ce|ct)

Sets (t1 var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn

\tl_put_left:Nn (tl var) {(tokens)}

\tl_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\tl_gput_left:Nn

\tl_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends (tokens) to the left side of the current content of (t1 var).

113

\tl_put_right:Nn

\tl_put_right:Nn (t1 var) {(tokens)}

\tl_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\tl_gput_right:Nn

\tl_gput_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\tl_if_blank_p:n *
\tl_if_blank_p:(e[V|o) =
\tl_if_blank:nTF *
\tl_if_blank:(e|V|o)TF =

\tl_if_empty_p:N
\tl_if_empty_p:c
\tl_if_empty:NTF
\tl_if_empty:cTF

\tl_if_empty_p:n *
\tl_if_empty_p:(V|ole) =
\tl_if_empty:nTF *
\tl_if_empty:(V]o|e)TE =

\tl_if_eq_p:NN
\tl_if_eq_p:(Nc|cN|ec)
\tl_if_eq:NNTF
\tl_if_eq:(Nc|cN|cc)TF

\tl_if_eq:NnTF
\tl_if_eq:cnTF

New: 2020-07-14

\tl_if_eq:nnTF
\tl_if_eq:(nV|ne|Vn|en|ee)TF

Appends (tokens) to the right side of the current content of (t1 var).

15.3 Token list conditionals

\tl_if_blank_p:n {(token list)}

\tl_if_blank:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token 1ist) consists only of blank spaces (i.e., contains no item). The test
is true if (token list) is zero or more explicit space characters (explicit tokens with
character code 32 and category code 10), and is false otherwise.

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (t1 var) is entirely empty (i.e., contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e., contains no tokens at all).

\tl_if_eq_p:NN (tl1 var;) (tl var)

\tl_if_eq:NNTF (tl1 vari) (tl vars) {{true code)} {(false code)}

Compares the content of (t1 var;) and (t1 vars) and is logically true if the two contain
the same list of tokens (i.e., identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Ne \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_tl \1_tmpb_tl { true } { false }

yields false. See also \str_if_eq:nnTF for a comparison that ignores category codes.

\tl_if_eq:NnTF (t1 vari) {(token lists)} {(true code)} {(false code)}

Tests if the (t1 var;) and the (token lists) contain the same list of tokens, both in
respect of character codes and category codes. This conditional is not expandable: see
\tl_if_eq:NNTF for an expandable version when both token lists are stored in variables,
or \str_if_eq:nnTF if category codes are not important.

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list)) and (token listy) contain the same list of tokens, both in respect
of character codes and category codes. This conditional is not expandable: see \t1_if_-
eq:NNTF for an expandable version when token lists are stored in variables, or \str_-
if_eq:nnTF if category codes are not important.

114

\tl_if_in:NnTF
\tl_if_in:(NV|No|cn|cV|co)

TF

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token 1list) is found in the content of the (t1 var). The (token list)
cannot contain the tokens {, } or # (more precisely, explicit character tokens with category
code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF

\tl_if_in:nnTF {(token listi)} {(token listqs)} {(true code)} {(false code)}

\tl_if_in:(Vn|VV|on|oo|nV|no)TF

\tl_if_novalue_p:n
\tl_if_novalue:nTF

*
*

\tl_if_single_p:N
\tl_if_single_p:c
\tl_if_single:NTF
\tl_if_single:cTF

\tl_if_single_p:n
\tl_if_single:nTF

*

\tl_if_single_token_p:n
\tl_if_single_token:nTF

*
*

Tests if (token lists) is found inside (token list;). The (token listy) cannot con-
tain the tokens {, } or # (more precisely, explicit character tokens with category code 1
(begin-group) or 2 (end-group), and tokens with category code 6). The search does not
enter brace (category code 1/2) groups.

\tl_if_novalue_p:n {(token list)}
\tl_if_novalue:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) and the special \c_novalue_t1 marker contain the same list
of tokens, both in respect of character codes and category codes. This means that
\exp_args:No \tl_if_novalue:nTF { \c_novalue_tl } is logically true but \tl_-
if _novalue:nTF { \c_novalue_tl } is logically false. This function is intended to
allow construction of flexible document interface structures in which missing optional
arguments are detected.

\tl_if_single_p:N (tl1 var)

\tl_if_single:NTF (t1 var) {(true code)} {(false code)}

Tests if the content of the (t1 var) consists of a single (item), i.e., is a single normal
token (neither an explicit space character nor a begin-group character) or a single brace
group, surrounded by optional spaces on both sides. In other words, such a token list
has token count 1 according to \t1_count:N.

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token 1ist) has exactly one (item), i.e., is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_if_single_token_p:n {(token list)}
\tl_if_single_token:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e., is either a single space character
or a single normal token. Token groups ({...}) are not single tokens.

115

\tl_if_regex_match:nnTF \tl_if_regex_match:nnTF {(token list)
\tl_if_regex_match:VnTF \tl_if_regex_match:nNTF {(token list)

(
\tl—?f-regex-matCh:nNE Tests whether the (regular expression) matches any part of the (token 1ist). For
\tl_if_regex_match:VNTF .

instance,

{(regex)} {(true code)} {(false code)}

}
} (regex var) {(true code)} {(false code)}

New: 2024-12-08

\tl_if_regex_match:nnTF { abecdcx } { b [cdel* } { TRUE } { FALSE }
\tl_if_regex_match:nnTF { example } { [b-dgq-w] } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream. Theses are alternative names for \regex_-
if_match:nnTF and friends, with arguments re-ordered for (token list) testing; see
[3regex chapter for more details of the (regex) format.

15.3.1 Testing the first token

\tl_if_head_eq_catcode_p:nN * \tl_if_head_eq_catcode_p:nN {(token list)} (test token)
\tl_if_head_eq_catcode_p:(VN|eN|oN) x \tl_if_head_eq_catcode:nNTF {(token list)} (test token)
\tl_if_head_eq_catcode:nNTF * {(true code)} {(false code)}

\tl_if_head_eq_catcode: (VN|eN|oN)TF x

Tests if the first (token) in the (token list) has the same category code as the (test
token). In the case where the (token 1ist) is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN * \tl_if_head_eq_charcode_p:nN {(token list)} (test token)
\tl_if_head_eq_charcode_p:(VN|eN|fN) % \tl_if_head_eq_charcode:nNTF {(token list)} (test token)
\tl_if_head_eq_charcode:nNTF * {(true code)} {(false code)}

\tl_if_head_eq_charcode:(VN|eN|fN)TF

Tests if the first (token) in the (token 1ist) has the same character code as the (test
token). In the case where the (token 1ist) is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN * \tl_if_head_eq_meaning_p:nN {(token list)} (test token)
\tl_if_head_eq_meaning p:(VN|eN) + \tl_if_head_eq_meaning:nNTF {(token list)} (test token)
\tl_if_head_eq_meaning:nNTF * {(true code)} {(false code)}

\tl_if_head_eq_meaning:(VN|eN)TF x

Tests if the first (token) in the (token 1ist) has the same meaning as the (test token).
In the case where (token list) is empty, the test is always false.

\tl_if_head_is_group_p:n = \tl_if_head_is_group_p:n {(token list)}
\tl_if_head_is_group:nTF x \tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts
with a brace group. In particular, the test is false if the (token 1ist) starts with an
implicit token such as \c_group_begin_token, or if it is empty. This function is useful
to implement actions on token lists on a token by token basis.

116

\tl_if_head_is_N_type_p:n * \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF % \tl_if_head_is_N_type:nTF {(token 1list)} {(true code)} {(false code)}

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF *

\tl_to_str:n *
\tl_to_str:(o|V]vle) %

Tests if the first (token) in the (token 1ist) is a normal N-type argument. In other
words, it is neither an explicit space character (explicit token with character code 32 and
category code 10) nor an explicit begin-group character (with category code 1 and any
character code). An empty argument yields false, as it does not have a normal first
token. This function is useful to implement actions on token lists on a token by token
basis.

\tl_if_head_is_space_p:n {(token list)}

\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token 1ist) is an explicit space character (explicit
token with character code 32 and category code 10). In particular, the test is false
if the (token list) starts with an implicit token such as \c_space_token, or if it is
empty. This function is useful to implement actions on token lists on a token by token
basis.

15.4 Working with token lists as a whole

15.4.1 Using token lists

\tl_to_str:n {(token list)}

Converts the (token 1ist) to a (string), leaving the resulting character tokens in the
input stream. A (string) is a series of tokens with category code 12 (other) with the
exception of spaces, which retain category code 10 (space). The base function requires
only a single expansion. Its argument must be braced.

TEXhackers note: This is the e-TEX primitive \detokenize. Converting a (token list)
to a (string) yields a concatenation of the string representations of every token in the (token
list). The string representation of a control sequence is

o an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

o the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

117

\tl_to_str:N

\tl_to_str:c

\tl_use:N
\tl_use:c

\tl_count:n
\tl_count:(V|v|e|o)

*

\tl_count:N

\tl_count:c

*

\tl_count_tokens:n

*

\tl_reverse:n
\tl_reverse:(V|o|f|e)

*

\tl_to_str:N (tl var)

Converts the content of the (t1 var) into a series of characters with category code
12 (other) with the exception of spaces, which retain category code 10 (space). This
(string) is then left in the input stream. For low-level details, see the notes given for
\tl_to_str:n.

\tl_use:N (tl1 var)

Recovers the content of a (t1 var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(t1 var) directly without an accessor function.

15.4.2 Counting and reversing token lists

\tl_count:n {(token list)}

Counts the number of (items) in the (token list) and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({...}). This
process ignores any unprotected spaces within the (token list). See also \t1l_count:N.
This function requires three expansions, giving an (integer denotation).

\tl_count:N (tl1 var)

Counts the number of (items) in the (t1 var) and leaves this information in the input
stream. Unbraced tokens count as one element as do each token group ({...2}). This
process ignores any unprotected spaces within the (t1 var). See also \tl_count:n.
This function requires three expansions, giving an (integer denotation).

\tl_count_tokens:n {(token list)}

Counts the number of TEX tokens in the (token list) and leaves this information in
the input stream. Every token, including spaces and braces, contributes one to the total;
thus for instance, the token count of a~{bc} is 6.

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token 1list), so that (item;)(items)(items)
...{item,) becomes (item,)...(items)(items)(item;). This process preserves unpro-
tected space within the (token 1ist). Tokens are not reversed within braced token
groups, which keep their outer set of braces. In situations where performance is impor-
tant, consider \t1l_reverse_items:n. See also \t1l_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

118

\tl_reverse:N \tl_reverse:N (tl var)
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

Sets the (t1 var) to contain the result of reversing the order of its (items), so
that (item;){items)({items) ... (item,) becomes (item,)...(items){items)(item;). This
process preserves unprotected spaces within the (t1 var). Braced token groups are
copied without reversing the order of tokens, but keep the outer set of braces. This
is equivalent to a combination of an assignment and \tl_reverse:V. See also \tl_-
reverse_items:n for improved performance.

\tl_reverse_items:n x \tl_reverse_items:n {(token list)}

Reverses the order of the (items) in the (token list), so that (item)(items)(items)
... (itemy,) becomes {(item,)} ... {(items)}{(itema)}{(item;)}. This process removes
any unprotected space within the (token 1ist). Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \t1_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_trim_spaces:n * \tl_trim_spaces:n {(token list)}
\tl_trim_spaces:(V|v]e|o) *

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token 1ist) and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_trim_left_spaces:n * \tl_trim_left_spaces:n {(token list)}
\tl_trim_left_spaces:(V|v|elo) =«
\tl_trim_right_spaces:n *

\tl_trim_right_spaces:(V|v|elo) =

New: 2025-02-02

Analogue of \tl_trim_spaces:n which removes any leading or trailing explicit space
characters (explicit tokens with character code 32 and category code 10) from the (token
list) and leaves the result in the input stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_trim_spaces_apply:nN x \tl_trim_spaces_apply:nN {(token list)} (function)
\tl_trim_spaces_apply:oN x*

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and passes the result to the
(function) as an n-type argument.

119

\tl_trim_left_spaces_apply:nN * \tl_trim_left_spaces_apply:nN {(token list)} (functionm)
\tl_trim_left_spaces_apply:oN =x
\tl_trim_right_spaces_apply:nN =%
\tl_trim_right_spaces_apply:oN =

New: 2025-02-02

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

\tl_trim_left_spaces:N
\tl_trim_left_spaces:c
\tl_trim_right_spaces:N
\tl_trim_right_spaces:c
\tl_gtrim_left_spaces:N
\tl_gtrim_left_spaces:c
\tl_gtrim_right_spaces:N
\tl_gtrim_right_spaces:c

New: 2025-02-02

\t1l_show:N
\t1l_show:c

Updated: 2021-04-29

\t1l_show:n
\tl_show:e

\tl_log:N
\tl_log:c

Updated: 2021-04-29

\tl_log:n
\tl_log:(e|x)

Analogue of \t1l_trim_spaces_apply:nN which removes any leading or trailing explicit
space characters (explicit tokens with character code 32 and category code 10) from the
(token 1list) and passes the result to the (function) as an n-type argument.

\tl_trim_spaces:N (tl1 var)

Sets the (t1 var) to contain the result of removing any leading and trailing explicit
space characters (explicit tokens with character code 32 and category code 10) from its
contents.

\tl_trim_left_spaces:N (tl1 var)

Analogue of \tl_trim_spaces:N which sets the (t1 var) to contain the result of re-
moving any leading or trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from its contents.

15.4.3 Viewing token lists

\tl_show:N (tl1 var)

Displays the content of the (t1 var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:n {(token list)}

Displays the (token list) on the terminal.

TEXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_log:N (tl1 var)

Writes the content of the (t1 var) in the log file. See also \t1_show:N which displays
the result in the terminal.

\tl_log:n {(token list)}

Writes the (token list) in the log file. See also \t1l_show:n which displays the result
in the terminal.

120

\tl_map_function:NN
\tl_map_function:cN

R

\tl_map_function:nN
\tl_map_function:eN

X

\tl_map_inline:Nn
\tl_map_inline:cn

\tl_map_inline:nn

\tl_map_tokens:Nn ¥
\tl_map_tokens:cn w
\tl_map_tokens:nn %

\tl_map_variable:NNn
\tl_map_variable:cNn

15.5 Manipulating items in token lists

15.5.1 Mapping over token lists

All mappings are done at the current group level, i.e., any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\tl_map_function:NN (tl1 var) (function)

Applies (function) to every (item) in the (tl1 var). The (function) receives one
argument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:nN.

\tl_map_function:nN {(token list)} (function)

Applies (function) to every (item) in the (token list), The (function) receives one
argument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

\tl_map_inline:Nn (tl1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (t1 var). The
(inline function) should consist of code which receives the (item) as #1. See also
\tl_map_function:NN.

\tl_map_inline:nn {(token list)} {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The
(inline function) should consist of code which receives the (item) as #1. See also
\tl_map_function:nN.

\tl_map_tokens:Nn (tl var) {(code)}

\tl_map_tokens:nn {(token 1list)} {(code)}

Analogue of \t1l_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each (item) in the (t1 var) or in the (token list) as a
trailing brace group. For instance,

\tl_map_tokens:Nn \1_my_tl { \prg_replicate:nn { 2 } }

expands to twice each (item) in the (t1 var): for each (item) in \1_my_t1 the function
\prg_replicate:nn receives 2 and (item) as its two arguments. The function \t1l_-
map_inline:Nn is typically faster but is not expandable.

\tl_map_variable:NNn (tl1 var) (variable) {(code)}

Stores each (item) of the (t1 var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced.
The assignments to the (variable) are local. Its value after the loop is the last (item) in
the (t1 var), or its original value if the (t1 var) is blank. See also \t1_map_inline:Nn.

121

\tl_map_variable:nNn

\tl_map_break:

\tl_map_break:n

\tl_map_variable:nNn {(token list)} (variable) {(code)}

Stores each (item) of the (token list) in turn in the (token list) (variable) and applies
the (code). The (code) will usually make use of the (variable), but this is not enforced.
The assignments to the (variable) are local. Its value after the loop is the last (item) in
the (t1 var), or its original value if the (t1 var) is blank. See also \t1_map_inline:nn.

\t1l_map_break:

Used to terminate a \tl_map_. .. function before all entries in the (token 1ist) have
been processed. This normally takes place within a conditional statement, for example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \t1l_map_... scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\tl_map_break:n {(code)}

Used to terminate a \tl_map_. .. function before all entries in the (token 1ist) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }
% Do something useful

}
Use outside of a \t1_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

15.5.2 Head and tail of token lists

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

122

\tl_head:N
\tl_head:n
\tl_head:(V|v|f|e)

* \tl_head:n {(token list)}
*

, Leaves in the input stream the first (item) in the (token 1ist), discarding the rest of

the (token list). All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ab } c }

yields _ab. A blank (token 1ist) (see \tl_if_blank:nTF) results in \t1_head:n leav-
ing nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_head:w = \tl_head:w (token list) { } \q_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of
the (token list). All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded. A blank (token 1ist) (which consists
only of space characters) results in a low-level TEX error, which may be avoided by the
inclusion of an empty group in the input (as shown), without the need for an explicit
test. Alternatively, \t1_if_blank:nF may be used to avoid using the function with a
“blank” argument. This function requires only a single expansion, and thus is suitable
for use within an o-type expansion. In general, \t1_head:n should be preferred if the
number of expansions is not critical.

\tl_tail:N
\tl_tail:n
\tl_tail:(V|v|f|e)

\tl_tail:n {(token list)}

*
: Discards all leading explicit space characters (explicit tokens with character code 32 and

category code 10) and the first (item) in the (token list), and leaves the remaining
tokens in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }
and
\tl_tail:n { ~ a ~ {bc} d }

both leave _{bc}d in the input stream. A blank (token 1ist) (see \tl_if_blank:nTF)
results in \t1_tail:n leaving nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

If you wish to handle token lists where the first token may be a space, and this

123

needs to be treated as the head/tail, this can be accomplished using \t1_if_head_is_-
space:nTF, for example

\exp_last_unbraced:NNo
\cs_new:Npn __mypkg_gobble_space:w \c_space_tl { }
\cs_new:Npn \mypkg_tl_head_keep_space:n #1

{
\tl_if_head_is_space:nTF {#1}
{~1
{ \tl_head:n {#1} }
}
\cs_new:Npn \mypkg_tl_tail_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{ \exp_not:o { __mypkg_gobble_space:w #1 } }
{ \tl_tail:n {#1} }
}

15.5.3 Items and ranges in token lists

\tl_item:nn = \tl_item:nn {(token list)} {(integer expression)}
\tl_item:Nn *

4 Indexing items in the (token list) from 1 on the left, this function evaluates the
\tl_item:cn *

(integer expression) and leaves the appropriate item from the (token list) in the
input stream. If the (integer expression) is negative, indexing occurs from the right
of the token list, starting at —1 for the right-most item. If the index is out of bounds,
then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an e-type or x-type
argument expansion.

\tl_rand_item:N x \tl_rand_item:N (t1 var)
\tl _rand_item:c x \tl_rand_item:n {(token list)}

\tl.rand item:n * gijocts g pseudo-random item of the (token 1ist). If the (token 1list) is blank, the
result is empty.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an e-type or x-type
argument expansion.

124

\tl_range:Nnn * \tl_range:Nnn (tl var) {(start index)} {(end index)}
\tl_range:nnn * \tl_range:nnn {(token list)} {(start index)} {(end index)}

Leaves in the input stream the items from the (start index) to the (end index) inclu-
sive. Spaces and braces are preserved between the items returned (but never at either end
of the list). Here (start index) and (end index) should be (integer expressions).
For describing in detail the functions’ behavior, let m and n be the start and end index
respectively. If either is 0, the result is empty. A positive index means ‘start counting
from the left end’, and a negative index means ‘from the right end’. Let [be the count
of the token list.

The actual start point is determined as M = mif m > 0and as M =1+ m+ 1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1if n <0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [.

Spaces in between items in the actual range are preserved. Spaces at either end
of the token list will be removed anyway (think to the token list being passed to
\tl_trim_spaces:n to begin with.

Thus, with [= 7 as in the examples below, all of the following are equivalent and
result in the whole token list

\tl_range:nnn { abcd~{e{}}fg } { 1
\tl_range:nnn { abcd~{e{}}fg } { 1
\tl_range:nnn { abcd~{e{}}fg } { -7 } {
\tl_range:nnn { abcd~{e{}}fg } { -12 } { 7 }

B e
-~ A
=~

-

Here are some more interesting examples. The calls

\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { 2} {5} }

\iow_term:e { \tl_range:nnn { abcd{e{}}g } {2} { -3} }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg >} { -6 > { 51} }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { -6 > { -3 } }

are all equivalent and will print becd{e{}} on the terminal; similarly

\iow_term:e { \tl_range:nnn { abcd~{e{}}fg >} {23+ {51} }

\iow_term:e { \tl_range:nnn { abcd~{e{}}fg >} {23} { -3} 1}
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { -6 } {56} }
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { -6 } { -3} }

are all equivalent and will print bed {e{}} on the terminal (note the space in the middle).
To the contrary,

\tl_range:nnn { abcd~{e{}}f } {2} {4}

will discard the space after ‘d’.

If we want to get the items from, say, the third to the last in a token list <t1>, the
call is \t1l_range:nnn { <t1> } { 3 } { -1 }. Similarly, for discarding the last item,
we can do \tl_range:nnn { <t1> } {1 } { -2 }.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an e-type or x-type
argument expansion.

125

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

\tl_sort:nN =*

15.5.4 Sorting token lists

\tl_sort:Nn (tl1 var) {(comparison code)}

Sorts the items in the (t1 var) according to the (comparison code), and assigns the
result to (t1 var). The details of sorting comparison are described in Section 6.1.

\tl_sort:nN {(token list)} (conditional)

Sorts the items in the (token 1ist), using the (conditional) to compare items, and
leaves the result in the input stream. The (conditional) should have signature :nnTF,
and return true if the two items being compared should be left in the same order, and
false if the items should be swapped. The details of sorting comparison are described
in Section 6.1.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

15.6 Manipulating tokens in token lists

15.6.1 Replacing tokens

Within token lists, replacement takes place at the top level: there is no recursion into
brace groups (more precisely, within a group defined by a category code 1/2 pair).

\tl_replace_once:Nnn

\tl_replace_once:Nnn (tl1 var) {(old tokens)} {(new

\tl_replace_once:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen| tokens)}

cnelcee)
\tl_greplace_once:Nnn

\tl_greplace_once: (NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen)|

cne|cee)

Replaces the first (leftmost) occurrence of (old tokens) in the (t1 var) with (new
tokens). (01d tokens) cannot contain {, } or # (more precisely, explicit character
tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category
code 6).

\tl_replace_all:Nnn

\tl_replace_all:Nnn (t1 var) {(old tokens)} {(new tokens)}

\tl_replace_all:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen)|

cne|cee)
\tl_greplace_all:Nnn

\tl_greplace_all:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen)|

cnelcee)

Replaces all occurrences of (old tokens) in the (t1 var) with (new tokens). (01d
tokens) cannot contain {, } or # (more precisely, explicit character tokens with category
code 1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (0ld tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

126

\tl_regex_replace_once:Nnn
\tl_regex_replace_once:cnn
\tl_regex_replace_once:NNn
\tl_regex_replace_once:cNn
\tl_regex_greplace_once:Nnn
\tl_regex_greplace_once:cnn
\tl_regex_greplace_once:NNn
\tl_regex_greplace_once:cNn

New: 2024-12-08

\tl_regex_replace_all:Nnn
\tl_regex_replace_all:cnn
\tl_regex_replace_all:NNn
\tl_regex_replace_all:cNn
\tl_regex_greplace_all:Nnn
\tl_regex_greplace_all:cnn
\tl_regex_greplace_all:NNn
\tl_regex_greplace_all:cNn

New: 2024-12-08

\tl_regex_replace_once:Nnn (t1 var) {(regex)} {(replacement)}
\tl_regex_replace_once:NNn (tl1 var) (regex var) {(replacement)}

Searches for the (regular expression) in the contents of the (t1 var) and replaces the
first match with the (replacement). In the (replacement), \O represents the full match,
\1 represents the contents of the first capturing group, \2 of the second, etc. Theses are
alternative names for \regex_replace_once:nnN and friends, with arguments re-ordered
for (t1 var) setting; See I3regex chapter for more details of the (regex) format.

\tl_regex_replace_all:Nnn (tl1 var) {(regex)} {(replacement)}
\tl_regex_replace_all:NNn (tl var) (regex var) {(replacement)}

Replaces all occurrences of the (regular expression) in the contents of the (t1 var)
by the (replacement), where \0 represents the full match, \1 represent the contents of
the first capturing group, \2 of the second, etc. Every match is treated independently,
and matches cannot overlap. Theses are alternative names for \regex_replace_all:nnN
and friends, with arguments re-ordered for (t1 var) setting; see I3regex chapter for more
details of the (regex) format.

\tl_remove_once:Nn

\tl_remove_once:Nn (t1 var) {(tokens)}

\tl_remove_once:(NV|Ne|cn|cV|ce)

\t1l_gremove_once:Nn

\tl_gremove_once:(NV|Ne|cn|cV|ce)

Removes the first (leftmost) occurrence of (tokens) from the (t1 var). The (tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code 1
(begin-group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn

\tl_remove_all:Nn (tl1 var) {(tokens)}

\tl_remove_all:(NV|Ne|cn|cV|ce)

\tl_gremove_all:Nn

\tl_gremove_all:(NV|Ne|cn|cV|ce)

Removes all occurrences of (tokens) from the (t1 var). The (tokens) cannot contain
{, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or
2 (end-group), and tokens with category code 6). As this function operates from left to
right, the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_tl {abbccd} \tl_remove_all:Nn \1_tmpa_t1l {bc}

results in \1_tmpa_t1 containing abcd.

127

15.6.2 Reassigning category codes

These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token lists
token-by-token with intervening category code changes or using \char_generate:nn).

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

\tl_set_rescan:(NnV|Nne|Nno|cnn|cnV|cne|cno)

\tl_gset_rescan:Nnn

\tl_gset_rescan:(NnV|Nne|Nno|cnn|cnV|cne|cno)

\tl_rescan:nn
\tl_rescan:nV

Sets (t1 var) to contain (tokens), applying the category code régime specified in the
(setup) before carrying out the assignment. (Category codes applied to tokens not
explicitly covered by the (setup) are those in force at the point of use of \t1l_set_-
rescan:Nnn.) This allows the (t1 var) to contain material with category codes other
than those that apply when (tokens) are absorbed. The (setup) is run within a group
and may contain any valid input, although only changes in category codes, such as uses
of \cctab_select:N, are relevant. See also \tl_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n).
If the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \t1l_rescan:nn.) The
(setup) is run within a group and may contain any valid input, although only changes
in category codes, such as uses of \cctab_select:N, are relevant. See also \tl_set_-
rescan:Nnn, which is more robust than using \t1_set:Nn in the (tokens) argument of
\tl_rescan:nn.

TgXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n).
If the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

Contrarily to the \scantokens e-TEX primitive, \t1_rescan:nn tokenizes the whole string
in the same category code régime rather than one token at a time, so that directives such as
\verb that rely on changing category codes will not function properly.

128

\c_empty_tl

\c_novalue_tl

\c_space_tl

\1_tmpa_tl

\1_tmpb_t1l

\g_tmpa_t1l
\g_tmpb_t1l

15.7 Constant token lists

Constant that is always empty.

A marker for the absence of an argument. This constant t1 can safely be typeset (¢f. \q_-
nil), with the result being -NoValue-. It is important to note that \c_novalue_t1 is
constructed such that it will not match the simple text input -NoValue-, i.e. that

\tl_if_eq:NnTF \c_novalue_tl { -NoValue- }

is logically false. The \c_novalue_t1 marker is intended for use in creating document-
level interfaces, where it serves as an indicator that an (optional) argument was omitted.
In particular, it is distinct from a simple empty t1.

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

15.8 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any IATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

129

\tl_build_begin:N
\tl_build_gbegin:N

\tl_build_put_left:Nn
\tl_build_put_left:Ne
\tl_build_gput_left:Nn
\tl_build_gput_left:Ne
\tl_build_put_right:Nn
\tl_build_put_right:Ne
\tl_build_gput_right:Nn
\tl_build_gput_right:Ne

Chapter 16

The 13tl-build module
Piecewise tl constructions

16.1 Constructing (t1 var) by accumulation

When creating a (t1 var) by accumulation of many tokens, the performance available
using a combination of \t1_set:Nn and \tl_put_right:Nn or similar begins to become
an issue. To address this, a set of functions are available to “build” a (t1 var). The per-
formance of this approach is much more efficient than the standard \t1_put_right:Nn,
but the constructed token list cannot be accessed during construction other than by
methods provided in this section.

Whilst the exact performance difference is dependent on the size of each added
block of tokens and the total number of blocks, in general, the \t1_build_(g)put...
functions will out-perform the basic \tl_(g)put... equivalent if more than 100 non-
empty addition operations occur. See https://github.com/latex3/latex3/issues/
1393#issuecomment-1880164756 for a more detailed analysis.

\tl_build_begin:N (tl1 var)

Clears the (t1 var) and sets it up to support other \tl_build_... functions. Un-
til \t1_build_end:N (t1 var) or \tl_build_gend:N (t1 var) is called, applying any
function from I3tl other than \tl_build_... will lead to incorrect results. The begin
and gbegin functions must be used for local and global (t1 var) respectively.

\tl_build_put_left:Nn (t1 var) {(tokens)}

\tl_build_put_right:Nn (t1 var) {(tokens)}

Adds (tokens) to the left or right side of the current contents of (t1 var). The (t1 var)
must have been set up with \t1_build_begin:N or \t1l_build_gbegin:N. The put and
gput functions must be used for local and global (t1 var) respectively. The right
functions are about twice faster than the left functions.

130

https://github.com/latex3/latex3/issues/1393#issuecomment-1880164756
https://github.com/latex3/latex3/issues/1393#issuecomment-1880164756

\tl_build_end:N \tl_build_end:N (tl var)

\el_build gend:N (oo the contents of (t1 var) and stores that into the (t1 var) using \tl_set:Nn or

\tl_gset:Nn. The (t1 var) must have been set up with \t1_build_begin:N or \tl_-
build_gbegin:N. The end and gend functions must be used for local and global (t1 var)
respectively. These functions completely remove the setup code that enabled (t1 var) to
be used for other \t1_build_... functions. After the action of end/gend, the (t1 var)
may be manipulated using standard t1 functions.

\tl_build_get_intermediate:NN \tl_build_get_intermediate:NN (t1 var;) (t1 varz)

New: 2023-12-14

Stores the contents of the (t1 var;) in the (t1 vars). The (t1 var;) must have been
set up with \t1_build_begin:N or \t1_build_gbegin:N. The (t1 vary) is a “normal”
token list variable, assigned locally using \t1_set:Nn.

131

Chapter 17

The 13str module
Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TEX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialized token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \t1_to_-
str:n for internal processing, and do not treat a token list or the corresponding string
representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when
one should be used over the other. Use a string variable for data that isn’t primarily
intended for typesetting and for which a level of protection from unwanted expansion is
suitable. This data type simplifies comparison of variables since there are no concerns
about expansion of their contents.

The functions \cs_to_str:N, \t1l_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) generate strings from the appropriate input: these are documented in
I3basics, 13tl and 13token, respectively.

Most expandable functions in this module come in three flavors:

e \str_...:N, which expect a token list or string variable as their argument;
e \str_...:n, taking any token list (or string) as an argument;
e \str_..._ignore_spaces:n, which ignores any space encountered during the op-

eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

132

\str_new:N
\str_new:c

\str_const:Nn
\str_const:(NV|Ne|cn|cV|ce)

\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c

\str_clear_new:N
\str_clear_new:c
\str_gclear_new:N
\str_gclear_new:c

\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

\str_concat :NNN
\str_concat:ccc
\str_gconcat :NNN
\str_gconcat:ccc

\str_if_exist_p:N *
\str_if_exist_p:c *
\str_if_exist:NTF *
\str_if_exist:cTF %

\str_set:Nn
\str_set:(NV|Ne|cn|cV|ce)
\str_gset:Nn
\str_gset:(NV|Ne|cn|cV|ce)

17.1 Creating and initializing string variables

\str_new:N (str var)

Creates a new (str var) or raises an error if the name is already taken. The declaration
is global. The (str var) is initially empty.

\str_const:Nn (str var) {(token list)}

Creates a new constant (str var) or raises an error if the name is already taken. The
value of the (str var) is set globally to the (token 1ist), converted to a string.

\str_clear:N (str var)

Clears the content of the (str var).

\str_clear_new:N (str var)

Ensures that the (str var) exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the (str var) empty.

\str_set_eq:NN (str vari) (str vars)

Sets the content of (str var;) equal to that of (str vars).

\str_concat:NNN (str vari) (str vars) (str vars)

Concatenates the content of (str varp) and (str vars) together and saves the result in
(str vary). The (str vars) is placed at the left side of the new string variable. The
(str vars) and (str vars) must indeed be strings, as this function does not convert
their contents to a string.

\str_if_exist_p:N (str var)

\str_if_exist:NTF (str var) {(true code)} {(false code)}

Tests whether the (str var) is currently defined. This does not check that the (str var)
really is a string.

17.2 Adding data to string variables

\str_set:Nn (str var) {(token list)}

Converts the (token list) to a (string), and stores the result in (str var).

133

\str_put_left:Nn

\str_put_left:Nn (str var) {(token list)}

\str_put_left:(NV|Ne|cn|cV|ce)

\str_gput_left:Nn

\str_gput_left:(NV|Ne|cn|cV|ce)

Converts the (token list) to a (string), and prepends the result to (str var). The
current contents of the (str var) are not automatically converted to a string.

\str_put_right:Nn

\str_put_right:Nn (str var) {(token list)}

\str_put_right:(NV|Ne|cn|cV|ce)

\str_gput_right:Nn

\str_gput_right:(NV|Ne|cn|cV|ce)

\str_if_empty_p:N
\str_if_empty_p:c
\str_if_empty:NTF
\str_if_empty:cTF
\str_if_empty_p:n

*
*
*
*
*
\str_if_empty:nTF *

Updated: 2022-03-21

\str_if_eq_p:NN
\str_if_eq_p:(Nc|cN|cc)
\str_if_eq:NNTF
\str_if_eq:(Nc|cN|cc)TF

L T I

Converts the (token list) to a (string), and appends the result to (str var). The
current contents of the (str var) are not automatically converted to a string.

17.3 String conditionals

\str_if_empty_p:N (str var)
\str_if_empty:NTF (str var) {(true code)} {(false code)}

Tests if the (string variable) is entirely empty (i.e., contains no characters at all).

\str_if_eq_p:NN (str vari) (str vars)
\str_if_eq:NNTF (str vari) (str vars) {(true code)} {(false code)}

Compares the content of two (str variables) and is logically true if the two contain the
same characters in the same order. See \tl_if_eq:NNTF to compare tokens (including
their category codes) rather than characters.

\str_if_eq_p:nn

\str_if_eq_p:(Vn|on|no|nV|VV|vn|nv|ee) x \str_if_eq:nnTF {(t1;)

\str_if_eq:nnTF

* \str_if_eq_p:nn {(t1:1)} {(tl2)}

A
} {(t12)} {(true code)} {(false code)}

*

\str_if_eq:(Vn|on|no|nV|VV|vn|nv|ee)TF x

\str_if_in:NnTF
\str_if_in:cnTF

Compares the two (token lists) on a character by character basis (namely after con-
verting them to strings), and is true if the two (strings) contain the same characters
in the same order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true. See \t1_if_eq:nnTF to compare tokens (including their category codes)
rather than characters.

\str_if_in:NnTF (str var) {(token list)} {(true code)} {(false code)}

Converts the (token 1list) to a (string) and tests if that (string) is found in the
content of the (str var).

134

\str_if_in:nnTF \str_if_in:nnTF {(t11)} {(t1l2)} {(true code)} {(false code)}

Converts both (token lists) to (strings) and tests whether (strings) is found inside
(stringy).

\str_case:nn

\str_case:(Vn|on|en|nV|nv|ne)

\str_case:nnTF

\str_case:(Vn|on|en|nV|nv|ne)TF

\str_case:Nn
\str_case:NnTF

\str_case:nnTF {(test string)}

{
(code case1)}
(code casez)}

{(string case1)
{(string cases)

}{
P {

*
*
*
*
*
*

%é;tring casen)} {(code case,)}

Updated: 2022-03-21

}

\str_case_e:
\str_case_e:
\str_case_e:
\str_case_e:

nn
en

nnTF
enTF

{{true code)}
{(false code)}

Compares the (test string) in turn with each of the (string case)s until a match
is found (all token lists are converted to strings). If the two are equal (as described for
\str_if_eq:nnTF) then the associated (code) is left in the input stream and other cases
are discarded. If any of the cases are matched, the (true code) is also inserted into
the input stream (after the code for the appropriate case), while if none match then the
(false code) is inserted. The function \str_case:nn, which does nothing if there is no
match, is also available.

This set of functions performs no expansion on each (string case) argument,
so any variable in there will be compared as a string. If expansion is needed in the
(string case)s, then \str_case_e:nn(TF) should be used instead.

\str_case_e:nnTF {(test string)}
{
{(string casei)} {{code casei)}
{(string case)} {{code cases)}

{(string casen)} {(code case,)}
}
{(true code)}
{(false code)}

Compares the full expansion of the (test string) in turn with the full expansion of
the (string case)s (all token lists are converted to strings). If the two full expansions
are equal (as described for \str_if_eq:eeTF) then the associated (code) is left in the
input stream and other cases are discarded. If any of the cases are matched, the (true
code) is also inserted into the input stream (after the code for the appropriate case),
while if none match then the (false code) is inserted. The function \str_case_e:nn,
which does nothing if there is no match, is also available. In \str_case_e:nn(TF), the
(test string) is expanded in each comparison, and must always yield the same result:
for example, random numbers must not be used within this string.

135

\str_compare_p:nNn =%
\str_compare_p:eNe x*
\str_compare:nNnTF *
\str_compare:eNeTF %

New: 2021-05-17

\str_map_function:nN w
\str_map_function:NN %
\str_map_function:cN w

\str_map_inline:nn
\str_map_inline:Nn
\str_map_inline:cn

\str_map_tokens:nn
\str_map_tokens:Nn ¥
\str_map_tokens:cn v

New: 2021-05-05

\str_compare_p:nNn {(tl1)} (relation) {(tl:)}
\str_compare:nNnTF {(t11)} (relation) {(tl:)} {(true code)} {(false code)}

Compares the two (token lists) on a character by character basis (namely after con-
verting them to strings) in a lexicographic order according to the character codes of the
characters. The (relation) can be <, =, or > and the test is true under the following
conditions:

o for <, if the first string is earlier than the second in lexicographic order;

o for =, if the two strings have exactly the same characters;

o for >, if the first string is later than the second in lexicographic order.
Thus for example the following is logically true:

\str_compare_p:nNn { ab } < { abc }

TEXhackers note: This is a wrapper around the TEX primitive \ (pdf) strcmp. It is meant for
programming and not for sorting textual contents, as it simply considers character codes and
not more elaborate considerations of grapheme clusters, locale, etc.

17.4 Mapping over strings

All mappings are done at the current group level, i.e., any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\str_map_function:nN {(token 1ist)} (function)
\str_map_function:NN (str var) (function)

Converts the (token 1list) toa (string) then applies (function) to every (character)
in the (string) including spaces.

\str_map_inline:nn {(token list)} {(inline function)}
\str_map_inline:Nn (str var) {(inline function)}

Converts the (token 1ist) to a (string) then applies the (inline function) to every
(character) in the (str var) including spaces. The (inline function) should consist
of code which receives the (character) as #1.

\str_map_tokens:nn {(token list)} {(code)}
\str_map_tokens:Nn (str var) {(code)}

Converts the (token list) to a (string) then applies (code) to every (character) in
the (string) including spaces. The (code) receives each character as a trailing brace
group. This is equivalent to \str_map_function:nN if the (code) consists of a single
function.

136

\str_map_variable:nNn
\str_map_variable:NNn
\str_map_variable:cNn

\str_map_break: 5

\str_map_break:n 5

\str_map_variable:nNn {(token list)} (variable) {(code)}
\str_map_variable:NNn (str var) (variable) {(code)}

Converts the (token list) to a (string) then stores each (character) in the (string)
(including spaces) in turn in the (string or token list) (variable) and applies the (code).
The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (character)
in the (string), or its original value if the (string) is empty. See also \str_map_-
inline:Nn.

\str_map_break:

Used to terminate a \str_map_... function before all characters in the (string) have
been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \1_my_str
{
\str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% Do something useful

}

See also \str_map_break:n. Use outside of a \str_map_. .. scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
continuing with the code that follows the loop. This depends on the design of the mapping
function.

\str_map_break:n {({code)}

Used to terminate a \str_map_. .. function before all characters in the (string) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo }
{ \str_map_break:n { <code> } }
% Do something useful

}
Use outside of a \str_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

137

\str_use:N
\str_use:c

17.5 Working with the content of strings

* \str_use:N (str var)

* Recovers the content of a (str var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(str) directly without an accessor function.

\str_count:N
\str_count:c
\str_count:n

* \str_count:n {(token list)}
*
*

\str_count_ignore_spaces:n %

Leaves in the input stream the number of characters in the string representation of (token
list), as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.

The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:N
\str_count_spaces:c
\str_count_spaces:n

*

* \str_count_spaces:n {(token list)}

* Leaves in the input stream the number of space characters in the string representation of

(token list), as an integer denotation. Of course, this function has no _ignore_spaces

variant.

\str_head:N
\str_head:c
\str_head:n
\str_head_ignore_spaces:n

* \str_head:n {(token list)}
*
*
*

Converts the (token list) into a (string). The first character in the (string) is
then left in the input stream, with category code “other”. The functions differ if the
first character is a space: \str_head:N and \str_head:n return a space token with
category code 10 (blank space), while the \str_head_ignore_spaces:n function ignores
this space character and leaves the first non-space character in the input stream. If the
(string) is empty (or only contains spaces in the case of the _ignore_spaces function),
then nothing is left on the input stream.

\str_tail:N
\str_tail:c
\str_tail:n
\str_tail_ignore_spaces:n

* \str_tail:n {(token list)}
*
*
*

Converts the (token list) to a (string), removes the first character, and leaves the
remaining characters (if any) in the input stream, with category codes 12 and 10 (for
spaces). The functions differ in the case where the first character is a space: \str_tail:N
and \str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the
first non-space character and any space before it. If the (token 1ist) is empty (or blank
in the case of the _ignore_spaces variant), then nothing is left on the input stream.

138

\str_item:Nn
\str_item:cn
\str_item:nn
\str_item_ignore_spaces:nn

* \str_item:nn {(token 1list)} {(integer expression)}
*
*
*

Converts the (token list) to a (string), and leaves in the input stream the char-
acter in position (integer expression) of the (string), starting at 1 for the first
(left-most) character. In the case of \str_item:Nn and \str_item:nn, all characters
including spaces are taken into account. The \str_item_ignore_spaces:nn function
skips spaces when counting characters. If the (integer expression) is negative, char-
acters are counted from the end of the (string). Hence, —1 is the right-most character,
etc.

\str_range:Nnn
\str_range:cnn
\str_range:nnn

* \str_range:nnn {(token list)} {(start index)} {(end index)}
*
*

\str_range_ignore_spaces:nnn *

Converts the (token 1ist) to a (string), and leaves in the input stream the characters
from the (start index) to the (end index) inclusive. Spaces are preserved and counted
as items (contrast this with \t1_range:nnn where spaces are not counted as items and
are possibly discarded from the output).

Here (start index) and (end index) should be integer denotations. For describing
in detail the functions’ behavior, let m and n be the start and end index respectively.
If either is 0, the result is empty. A positive index means ‘start counting from the left
end’, a negative index means ‘start counting from the right end’ Let [be the count of
the token list.

The actual start point is determined as M = mif m > 0andas M =1+ m+ 1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1if n <0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [. For
instance,

\iow_term:e { \str_range:nnn { abcdef } { 2} {5 } }

\iow_term:e { \str_range:nnn { abcdef } { -4} { -1 3} }
\iow_term:e { \str_range:nnn { abcdef } { -2} { -1 1} }
\iow_term:e { \str_range:nnn { abcdef } { 0} { -1} }

prints bede, cdef, ef, and an empty line to the terminal. The (start index) must
always be smaller than or equal to the (end index): if this is not the case then no
output is generated. Thus

\iow_term:e { \str_range:nnn { abcdef } { 5} {2} }
\iow_term:e { \str_range:nnn { abcdef } { -1} { -4 1} }

both yield empty strings.
The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed
before starting the job. The input

531}
-3 11}
531}

\iow_term:e { \str_range:nnn { abcdefg
\iow_term:e { \str_range:nnn { abcdefg
\iow_term:e { \str_range:nnn { abcdefg

{2134
{231
r{-631r{

139

\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

\str_replace_all:Nnn
\str_replace_all:cnn
\str_greplace_all:Nnn
\str_greplace_all:cnn

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

\iow_term:e { \str_range:nnn { abcdefg } { -6 } { -3 } }

\iow_term:e { \str_range:nnn { abc~efg } {2} {51} }

\iow_term:e { \str_range:nnn { abc~efg } {2 } { -3 } }

\iow_term:e { \str_range:nnn { abc~efg } { 6} { 5} }

\iow_term:e { \str_range:nnn { abc~efg } { -6 } { -3 } }

\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { 5} }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { 2} { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { 53} }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { -3 } }

will print four instances of bcde, four instances of bc e and eight instances of bcde.

17.6 Modifying string variables

\str_replace_once:Nnn (str var) {(old)} {(new)}

Converts the (0ld) and (new) token lists to strings, then replaces the first (leftmost)
occurrence of (old string) in the (str var) with (new string).

\str_replace_all:Nnn (str var) {(old)} {(new)}

Converts the (01d) and (new) token lists to strings, then replaces all occurrences of (old
string) in the (str var) with (new string). As this function operates from left to
right, the pattern (old string) may remain after the replacement (see \str_remove_-
all:Nn for an example).

\str_remove_once:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes the first (leftmost) occurrence
of (string) from the (str var).

\str_remove_all:Nn (str var) {(token list)}

Converts the (token list) toa (string) then removes all occurrences of (string) from
the (str var). As this function operates from left to right, the pattern (string) may
remain after the removal, for instance,

\str_set:Nn \1_tmpa_str {abbccd} \str_remove_all:Nn \1_tmpa_str
{bc}

results in \1_tmpa_str containing abcd.

140

17.7 String manipulation

\str_lowercase:n x \str_lowercase:n {(tokens)}
\str_lowercase:f x \str_uppercase:n {(tokens)}
\str_uppercase:n *
. f

Converts the input (tokens) to their string representation, as described for \t1_to_-
\str_uppercase

str:n, and then to the lower or upper case representation using a one-to-one mapping
as described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2

{
\cs_set_protected:cpn
{
user
\str_uppercase:f { \tl_head:n {#1} }
\str_lowercase:f { \tl_tail:n {#1} }
}
{#2 }
}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

o Caseless comparisons: use \str_casefold:n for this situation (case folding is dis-
tinct from lower casing).

e Case changing text for typesetting: see the \text_lowercase:n(n), \text_-
uppercase:n(n) and \text_titlecase_(all|first):n(n) functions which cor-
rectly deal with context-dependence and other factors appropriate to text case
changing.

141

\str_casefold:n x
\str_casefold:V x

New: 2022-10-16

\str_mdfive_hash:n *
\str_mdfive_hash:e *

New: 2023-05-19

\str_show:N
\str_show:c
\str_show:n

Updated: 2021-04-29

\str_log:N
\str_log:c
\str_log:n

Updated: 2021-04-29

\str_casefold:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \t1l_to_-
str:n, and then folds the case of the resulting (string) to remove case information. The
result of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_casefold:n follows the mappings provided by the Unicode
Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_casefold:n follows the “full” scheme defined
by the Unicode Consortium (e.g. SS folds to SS). As case-folding is a language-insensitive
process, there is no special treatment of Turkic input (i.e., I always folds to i and not to

1).

\str_mdfive_hash:n {(tokens)}

Expands to the MD5 sum generated from the (tokens), which is converted to a (string)
as described for \t1_to_str:n.

17.8 Viewing strings

\str_show:N (str var)

Displays the content of the (str var) on the terminal.

\str_log:N (str var)

Writes the content of the (str var) in the log file.

142

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

\c_ampersand_str
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str
\c_zero_str

Updated: 2020-12-22

\c_empty_str

New: 2023-12-07

\1_tmpa_str
\1_tmpb_str

\g_tmpa_str
\g_tmpb_str

17.9 Constant strings

Constant strings, containing a single character token, with category code 12.

Constant that is always empty.

17.10 Scratch strings

Scratch strings for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch strings for global assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

143

Chapter 18

The 13str-convert module
String encoding conversions

18.1 Encoding and escaping schemes

Traditionally, string encodings only specify how strings of characters should be stored as
bytes. However, the resulting lists of bytes are often to be used in contexts where only a
restricted subset of bytes are permitted (e.g., PDF string objects, URLs). Hence, storing
a string of characters is done in two steps.

o The code points (“character codes”) are expressed as bytes following a given “en-
coding”. This can be UTF-16, 1SO 8859-1, etc. See Table 1 for a list of supported
encodings.’

o Bytes are translated to TEX tokens through a given “escaping”. Those are defined
for the most part by the pdf file format. See Table 2 for a list of escaping methods
supported.©

6Encodings and escapings will be added as they are requested.

144

Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the encoding in this list.

(Encoding) description
utf8 UTF-8
utf16 UTF-16, with byte-order mark
utf16be UTF-16, big-endian
utfil6le UTF-16, little-endian
utf32 UTF-32, with byte-order mark
utf32be UTF-32, big-endian
utf32le UTF-32, little-endian
is088591, latinl IS0 8859-1
18088592, latin?2 ISO 8859-2
15088593, latin3 ISO 8859-3
is088594, latin4d ISO 8859-4
is088595 ISO 8859-5
is088596 ISO 8859-6
15088597 ISO 8859-7
15088598 ISO 8859-8
is088599, latinb ISO 8859-9
150885910, 1latin6 1SO 8859-10
is0885911 ISO 8859-11
180885913, latin7 ISO 8859-13
is0885914, latin8 ISO 8859-14
150885915, latin9 1SO 8859-15
150885916, latinl0 1SO 8859-16
clist comma-list of integers
(empty) native (Unicode) string
default like ut£8 with 8-bit engines, and like native with unicode-engines

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the escaping in this list.

(Escaping) description
bytes, or empty arbitrary bytes
hex, hexadecimal byte = two hexadecimal digits
name see \pdfescapename
string see \pdfescapestring
url encoding used in URLs

145

\str_set_convert:Nnnn
\str_gset_convert:Nnnn

\str_set_convert:NnnnTF
\str_gset_convert:NnnnTF

\str_convert_pdfname:n *

18.2 Conversion functions

\str_set_convert:Nnnn (str var) {(string)} {(name1)} {(name;)}

This function converts the (string) from the encoding given by (name;) to the encoding
given by (names), and stores the result in the (str var). Each (name) can have the
form (encoding) or (encoding)/{escaping), where the possible values of (encoding)
and (escaping) are given in Tables 1 and 2, respectively. The default escaping is to
input and output bytes directly. The special case of an empty (name) indicates the use
of “native” strings, 8-bit for pdfTEX, and Unicode strings for the other two engines.

For example,

\str_set_convert:Nnnn \1_foo_str { Hello! } { } { utfi6/hex }

results in the variable \1_foo_str holding the string FEFF00480065006C006C006F0021.
This is obtained by converting each character in the (native) string Hello! to the UTF-16
encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of
a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding
utf16be/hex.

An error is raised if the (string) is not valid according to the (escaping 1) and
(encoding 1), or if it cannot be reencoded in the (encoding 2) and (escaping 2) (for
instance, if a character does not exist in the (encoding 2)). Erroneous input is replaced
by the Unicode replacement character "FFFD, and characters which cannot be reencoded
are replaced by either the replacement character "FFFD if it exists in the (encoding 2),
or an encoding-specific replacement character, or the question mark character.

\str_set_convert:NnnnTF (str var) {(string)} {(namei)} {(name:)} {(true code)}
{(false code)}

As \str_set_convert:Nnnn, converts the (string) from the encoding given by (name;)
to the encoding given by (names), and assigns the result to (str var). Contrarily
to \str_set_convert:Nnnn, the conditional variant does not raise errors in case the
(string) is not valid according to the (name;) encoding, or cannot be expressed in the
(nameq) encoding. Instead, the (false code) is performed.

18.3 Conversion by expansion (for PDF contexts)

A small number of expandable functions are provided for use in PDF string/name con-
texts. These assume UTF-8 and no escaping in the input.

\str_convert_pdfname:n {(string)}

As \str_set_convert:Nnnn, converts the (string) on a byte-by-byte basis with non-
ASCII codepoints escaped using hashes.

18.4 Possibilities, and things to do

Encoding/escaping-related tasks.

146

In XHTEX/LuaTEX, would it be better to use the ~~~~.... approach to build
a string from a given list of character codes? Namely, within a group, assign
0-9a-f and all characters we want to category “other”, then assign ~ the category
superscript, and use \scantokens.

Change \str_set_convert:Nnnn to expand its last two arguments.

Describe the internal format in the code comments. Refuse code points in
["D800, "DFFF] in the internal representation?

Add documentation about each encoding and escaping method, and add examples.
The hex unescaping should raise an error for odd-token count strings.

Decide what bytes should be escaped in the url escaping. Perhaps the characters
17 ()*-./0123456789_ are safe, and all other characters should be escaped?

Automate generation of 8-bit mapping files.

Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use
256 integer registers; for encoding, use a tree-box.

More encodings (see Heiko’s stringenc). CESU?

More escapings: ASCII85, shell escapes, lua escapes, etc.?

147

Chapter 19

The 13quark module
Quarks and scan marks

Two special types of constants in ITEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_.

19.1 Quarks

Quarks are control sequences (and in fact, token lists) that expand to themselves and
should therefore never be executed directly in the code. This would result in an endless
loop!

They are meant to be used as delimiter in weird functions, the most common use
case being the ‘stop token’ (i.e., \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}
one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \q_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \g_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get :NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\g_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \t1_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster.

148

19.2 Defining quarks

\quark_new:N \quark_new:N (quark)

\q_stop

\q_mark

\g_nil

\q_no_value

\quark_if_nil_p:N
\quark_if_nil:NTF

\quark_if_nil_p:n
\quark_if nil_p:(o|V)
\quark_if_nil:nTF
\quark_if _nil:(o|V)TF

\quark_if_no_value_p:N
\quark_if_no_value_p:c
\quark_if_no_value:NTF
\quark_if_no_value:cTF

\quark_if_no_value_p:n
\quark_if_no_value:nTF

Creates a new (quark) which expands only to (quark). The (quark) is defined globally,
and an error message is raised if the name was already taken.

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

Used as a marker for delimited arguments when \g_stop is already in use.

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself need to be tested (in contrast to \g_stop, which is only ever used
as a delimiter).

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get:NnN if there is no
data to return.

19.3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The latter should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N (token)

\quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \gq_nil.

\quark_if_nil_p:n {(token list)}

\quark_if_nil:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token 1ist) containsonly \q_nil (distinct from (token list) being empty
or containing \q_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_no_value.

* \quark_if_no_value_p:n {(token list)}

\quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being
empty or containing \q_no_value plus one or more other tokens).

149

19.4 Recursion

This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below and an example is shown in
Section 19.4.1.

\q_recursion_tail This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_stop This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N x \quark_if_recursion_tail_stop:N (token)

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n * \quark_if_recursion_tail_stop:n {(token list)}
\quark_if_recursion_tail_stop:o *

Tests if the (token list) contains only \g_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn * \quark_if_recursion_tail_stop_do:Nn (token) {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the
input stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn * \quark_if_recursion_tail_stop_do:nn {(token list)} {(insertion)}
\quark_if_recursion_tail_stop_do:on *

Tests if the (token list) contains only \g_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \g_-
recursion_stop as the last two items. The (insertion) code is then added to the
input stream after the recursion has ended.

\quark_if_recursion_tail_break:NN * \quark_if_recursion_tail_break:nN {(token list)} \(type)_map_break:
\quark_if_recursion_tail_break:nN x

Tests if (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion using \(type)_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \(type)_map_break:.

150

19.4.1 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]1~} would produce “[-a-b-] [-c-d-] ". Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that does
the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \q_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2

{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \g_recursion_tail \q_recursion_tail
\q_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

\cs_new:Nn __my_map_dbl:nn

{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#23}

Finally, recurse:

__my_map_dbl:nn
}

Note that contrarily to IXTEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map would overwrite the definition of __my_map_dbl_fn:nn.

19.5 Scan marks

Scan marks are control sequences set equal to \scan_stop:, hence never expand in an
expansion context and are (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see I3regex).

151

\scan_new:N \scan_new:N (scan mark)

Creates a new (scan mark) which is set equal to \scan_stop:. The (scan mark) is
defined globally, and an error message is raised if the name was already taken by another
scan mark.

\s_stop Used at the end of a set of instructions, as a marker that can be jumped to using \use_-
none_delimit_by_s_stop:w.

\use_none_delimit_by_s_stop:w x \use_none_delimit_by_s_stop:w (tokens) \s_stop

Removes the (tokens) and \s_stop from the input stream. This leads to a low-level
TEX error if \s_stop is absent.

152

\seq_new:N

\seq_new:c

\seq_clear:N

\seq_clear:c
\seq_gclear:N

\seq_gclear:c

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_set_eq:NN
\seq_set_eq:(cN|Nc|ec)
\seq_gset_eq:NN
\seq_gset_eq:(cN|Nc|cc)

Chapter 20

The 13seq module
Sequences and stacks

IXTEX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any (balanced text). It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in IXTEX3. This is achieved
using a number of dedicated stack functions.

20.1 Creating and initializing sequences

\seq_new:N (seq var)

Creates a new (seq var) or raises an error if the name is already taken. The declaration
is global. The (seq var) initially contains no items.

\seq_clear:N (seq var)

Clears all items from the (seq var).

\seq_clear_new:N (seq var)

Ensures that the (seq var) exists globally by applying \seq_new:N if necessary, then
applies \seq_(g)clear:N to leave the (seq var) empty.

\seq_set_eq:NN (seq vari) (seq varsz)

Sets the content of (seq varp) equal to that of (seq vars).

153

\seq_set_from_clist:NN \seq_set_from_clist:NN (seq var) (clist var)
\seq_set_from_clist:(cN|Nc|cc)

\seq_set_from_clist:Nn

\seq_set_from_clist:cn

\seq_gset_from_clist:NN

\seq_gset_from_clist:(cN|[Nc|cc)

\seq_gset_from_clist:Nn

\seq_gset_from_clist:cn

Converts the data in the (clist var) into a (seq var): the original (clist var) is
unchanged.

\seq_const_from_clist:Nn \seq_const_from_clist:Nn (seq var) {(comma-list)}
\seq_const_from_clist:cn

Creates a new constant (seq var) or raises an error if the name is already taken. The
(seq var) is set globally to contain the items in the (comma 1ist).

\seq_set_split:Nnn \seq_set_split:Nnn (seq var) {(delimiter)} {(token list)}
\seq_set_split:(NVn|NnV|NVV|Nne|Nee)

\seq_gset_split:Nnn

\seq_gset_split:(NVn|NnV|NVV|Nne|Nee)

Splits the (token list) into (items) separated by (delimiter), and assigns the result
to the (seq var). Spaces on both sides of each (item) are ignored, then one set of outer
braces is removed (if any); this space trimming behavior is identical to that of |3clist
functions. Empty (items) are preserved by \seq_set_split:Nnn, and can be removed
afterwards using \seq_remove_all:Nn (seq var) {}. The (delimiter) may not contain
{, } or # (assuming TEX’s normal category code régime). If the (delimiter) is empty,
the (token 1ist) is split into (items) as described for \t1_map_function:nN. See also
\seq_set_split_keep_spaces:Nnn, which omits space stripping.

\seq_set_split_keep_spaces:Nnn \seq_set_split_keep_spaces:Nnn (seq var) {(delimiter)} {(token list)}
\seq_set_split_keep_spaces:NnV
\seq_gset_split_keep_spaces:Nnn
\seq_gset_split_keep_spaces:NnV

New: 2021-03-24

Splits the (token list) into (items) separated by (delimiter), and assigns the result
to the (seq var). One set of outer braces is removed (if any) but any surrounding spaces
are retained: any braces inside one or more spaces are therefore kept. Empty (items)
are preserved by \seq_set_split_keep_spaces:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (seq var) {}. The (delimiter) may not contain {, } or
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the
(token 1list) is split into (items) as described for \t1l_map_function:nN; note in this
case spaces will not be preserved. See also \seq_set_split:Nnn, which removes spaces
around the delimiters.

154

\seq_set_filter:NNn \seq_set_filter:NNn (seq vari) (seq vars) {(inline boolexpr)}

\seq_gset_filter:NNn

(inl

Evaluates the (inline boolexpr) for every (item) stored within the (seq vars). The

ine boolexpr) receives the (item) as #1. The sequence of all (items) for which

the (inline boolexpr) evaluated to true is assigned to (seq vary).

used

\seq_set_regex_extract_once:Nnn
\seq_set_regex_extract_once:cnn
\seq_set_regex_extract_once:NNn
\Seq_set_regex_extract_once:an
\seq_gset_regex_extract_once:Nnn
\seq_gset_regex_extract_once:cnn
\seq_gset_regex_extract_once:NNn
\seq_gset_regex_extract_once:cNn

New: 2024-12-08

Find

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
in this function, and would lead to low-level TEX errors.

\seq_set_regex_extract_once:Nnn (seq var) {(regex)} {(token list)}
\seq_set_regex_extract_once:NNn (seq var) (regex var) {(token list)}

s the first match of the (regex) in the (token list). If it exists, the match is

stored as the first item of the (seq var), and further items are the contents of capturing
groups, in the order of their opening parenthesis. If there is no match, the (seq var) is

clear

ed. Theses are alternative names for \regex_extract_once:nnN and friends, with

arguments re-ordered for (seq var) setting; see |13regex chapter for more details of the
(regex) format.

\seq_set_regex_extract_all:Nnn
\seq_set_regex_extract_all:cnn
\seq_set_regex_extract_all:NNn
\seq_set_regex_extract_all:cNn
\seq_gset_regex_extract_all:Nnn
\seq_gset_regex_extract_all:cnn
\seq_gset_regex_extract_all:NNn
\seq_gset_regex_extract_all:cNn

New: 2024-12-08

\seq_set_regex_extract_all:Nnn (seq var) {(regex)} {(token list)}
\seq_set_regex_extract_all:NNn (seq var) (regex var) {(token list)}

Finds all matches of the (regex) in the (token list), and stores all the submatch
information in a single sequence (concatenating the results of multiple \seq_set_regex_-

extr

act_all:Nnn calls). If there is no match, the (seq var) is cleared. Theses are

alternative names for \regex_extract_all:nnN and friends, with arguments re-ordered
for (seq var) setting; see I3regex chapter for more details of the (regex) format.

155

\seq_set_regex_split:Nnn \seq_set_regex_split:Nnn (seq var) {(regex)} {(token list)}

\seq_set_regex_split:cnn \seq_set_regex_split:NNn (seq var) (regex var) {(token list)}
\seq_set_regex_split:NNn
\seq_set_regex_split:cNn
\seq_gset_regex_split:Nnn

Splits the (token 1ist) into a sequence of parts, delimited by matches of the (regular
expression). If the (regular expression) has capturing groups, then the token lists

\ . that they match are stored as items of the sequence as well. If no match is found the
seq_gset_regex_split:cnn ") -

\seq_gset_regex_split:NNn resulting (seq var) has the (token list) asits sole item. If the (regular expression)

\seq_gset regex split:cNn Matches the empty token list, then the (token list) is split into single tokens. For

example, after

New: 2024-12-08

\seq_set_regex_split:Nnn \1_path_seq { / } { the/path/for/this/file.tex }

the sequence \1_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}. Theses are alternative names for \regex_split:nnN and friends, with
arguments re-ordered for (seq var) setting; see 3regex chapter for more details of the
(regex) format.

\seq_concat:NNN \seq_concat:NNN (seq vari) (seq vars) (seq vars)
\seq_concat:ccc

\seq_gconcat :NNN
\seq_gconcat:ccc

Concatenates the content of (seq varp) and (seq vars) together and saves the result in
(seq vary). The items in (seq vars) are placed at the left side of the new sequence.

\seq_if_exist_p:N (seq var)
\seq_if_exist:NTF (seq var) {(true code)} {(false code)}

\seq_if_exist_p:N
\seq_if_exist_p:c
\seq_if_exist:NTF
\seq_if_exist:cIF

b . I

Tests whether the (seq var) is currently defined. This does not check that the (seq var)
really is a sequence variable.

20.2 Appending data to sequences

\seq_put_left:Nn \seq_put_left:Nn (seq var) {(item)}
\seq_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\seq_gput_left:Nn

\seq_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends the (item) to the left of the (seq var).

\seq_put_right:Nn \seq_put_right:Nn (seq var) {(item)}
\seq_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\seq_gput_right:Nn

\seq_gput_right: (NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends the (item) to the right of the (seq var).

20.3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementation
reasons, the actions at the left of the sequence are faster than those acting on the right.
These functions all assign the recovered material locally, i.e., setting the (t1 var) used
with \t1l_set:Nn and never \tl_gset:Nn.

156

\seq_get_left:
:cN

\seq_get_left

NN

\seq_get_right:
:cN

\seq_get_right

NN

\seq_pop_left:
:cN

\seq_pop_left

NN

\seq_gpop_left:
:cN

\seq_gpop_left

NN

\seq_pop_right:
:cN

\seq_pop_right

NN

\seq_gpop_right:
:cN

\seq_gpop_right

NN

\seq_item:Nn

\seq_item: (NV|Ne|cn|cV|ce)

*
*

\seq_get_left:NN (seq var) (tl var)

Stores the left-most item from a (seq var) in the (t1 var) without removing it from
the (seq var). The (t1 var) is assigned locally. If (seq var) is empty the (t1 var) is
set to the special marker \q_no_value.

\seq_get_right:NN (seq var) (tl var)

Stores the right-most item from a (seq var) in the (t1 var) without removing it from
the (seq var). The (t1 var) is assigned locally. If (seq var) is empty the (t1 var) is
set to the special marker \q_no_value.

\seq_pop_left:NN (seq var) (tl var)

Pops the left-most item from a (seq var) into the (t1 var), i.e., removes the item from
the sequence and stores it in the (t1 var). Both of the variables are assigned locally. If
(seq var) is empty the (t1 var) is set to the special marker \q_no_value.

\seq_gpop_left:NN (seq var) (tl var)

Pops the left-most item from a (seq var) into the (t1 var), i.e., removes the item from
the sequence and stores it in the (t1 var). The (seq var) is modified globally, while
the assignment of the (t1 var) is local. If (seq var) is empty the (t1 var) is set to
the special marker \q_no_value.

\seq_pop_right:NN (seq var) (tl var)

Pops the right-most item from a (seq var) into the (t1 var), i.e., removes the item from
the sequence and stores it in the (t1 var). Both of the variables are assigned locally. If
(seq var) is empty the (t1 var) is set to the special marker \q_no_value.

\seq_gpop_right:NN (seq var) (t1 var)

Pops the right-most item from a (seq var) into the (t1 var), i.e., removes the item
from the sequence and stores it in the (t1 var). The (seq var) is modified globally,
while the assignment of the (t1 var) is local. If (seq var) is empty the (t1 var) is set
to the special marker \q_no_value.

\seq_item:Nn (seq var) {(integer expression)}

Indexing items in the (seq var) from 1 at the top (left), this function evaluates the
(integer expression) and leaves the appropriate item from the sequence in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom
(right) of the sequence. If the (integer expression) is larger than the number of items
in the (seq var) (as calculated by \seq_count:N) then the function expands to nothing.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an e-type or x-type
argument expansion.

157

\seq_rand_item:N x

\seq_rand_item

iC X

\seq_get_left:
\seq_get_left:

NNTF
cNTF

\seq_get_right:
\seq_get_right:

NNTF
cNTF

\seq_pop_left:
\seq_pop_left:

NNTF
cNTF

\seq_gpop_left:
\seq_gpop_left:

NNTF
cNTF

\seq_rand_item:N (seq var)

Selects a pseudo-random item of the (seq var). If the (seq var) is empty the result is
empty.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an e-type or x-type
argument expansion.

20.4 Recovering values from sequences with branch-
ing

The functions in this section combine tests for non-empty sequences with recovery of an
item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

\seq_get_left:NNTF (seq var) (tl var) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of
the (t1 var) is not defined in this case and should not be relied upon. If the (seq var)
is non-empty, stores the left-most item from the (seq var) in the (t1 var) without
removing it from the (seq var), then leaves the (true code) in the input stream. The
(t1 var) is assigned locally.

\seq_get_right:NNTF (seq var) (tl var) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of
the (t1 var) is not defined in this case and should not be relied upon. If the (seq var)
is non-empty, stores the right-most item from the (seq var) in the (t1 var) without
removing it from the (seq var), then leaves the (true code) in the input stream. The
(t1 var) is assigned locally.

\seq_pop_left:NNTF (seq var) (tl var) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of
the (t1 var) is not defined in this case and should not be relied upon. If the (seq var)
is non-empty, pops the left-most item from the (seq var) in the (t1 var), i.e., removes
the item from the (seq var), then leaves the (true code) in the input stream. Both
the (seq var) and the (t1 var) are assigned locally.

\seq_gpop_left:NNTF (seq var) (tl var) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of
the (t1 var) is not defined in this case and should not be relied upon. If the (seq var)
is non-empty, pops the left-most item from the (seq var) in the (t1 var), i.e., removes
the item from the (seq var), then leaves the (true code) in the input stream. The
(seq var) is modified globally, while the (t1 var) is assigned locally.

158

\seq_pop_right :NNTF
\seq_pop_right:cNTF

\seq_gpop_right :NNTF
\seq_gpop_right:cNTF

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

\seq_pop_right:NNTF (seq var) (tl var) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(t1 var) is not defined in this case and should not be relied upon. If the (seq var) is
non-empty, pops the right-most item from the (seq var) in the (t1 var), i.e., removes
the item from the (seq var), then leaves the (true code) in the input stream. Both
the (seq var) and the (t1 var) are assigned locally.

\seq_gpop_righ